
Aperture - Computer Architecture Made Visual

Christofer Rodrigues1, Rogério Aparecido Gonçalves1 e João Fabrı́cio Filho1

1Departamento Acadêmico de Computação (DACOM)
Universidade Tecnológica Federal do Paraná (UTFPR) – Campus Campo Mourão

christofer_daniel12@hotmail.com,{rogerioag,joaof}@utfpr.edu.br

Abstract. Computer Architecture and Organization (CAO) is a recurring cur-
ricular component in technology courses. However, the content covered in this
subject ends up being limited to abstract concepts about how components work,
sometimes aided by the use of diagrams. Thus, we propose the implementation
of a material focused on visualization and interactivity with the components
studied, allowing the observation of the signals that pass through the circuits,
such as in an adder, or the control signals of a processor. The material produced
incrementally delivers basic digital logic circuits, such as adders, or memories,
and gradually increases in complexity, reaching the implementation of a MIPS
processor with a 5-stage pipeline based on the book by David A. Patterson and
John LeRoy Hennessy. With this work, we intend to facilitate the process of
studying AOC by providing material with a focus on visualization and interac-
tivity that complements traditional forms of teaching.

1. Introduction
Computer Architecture and Organization (CAO) is a common discipline of computer sci-
ence course curriculums. However, the contents covered in this subject can suffer from
impediments, such as the difficulty of visualizing the constituent components of a com-
puter processor without specialized equipment, a situation caused by the physical charac-
teristics of modern electronic components.

This situation leads to the presentation of this content being limited to the behavior
of the components, or to the use of conceptual diagrams. Thus, these concepts become
abstract when approached in the classroom, which makes it difficult to assimilate the
content and requires more mental effort from students to understand the concepts and
how they connect.

Various areas of science have explored the use of simulators to facilitate the under-
standing of abstract content. For example, the PHeT platform1, which aggregates a variety
of interactive simulators for areas such as physics and chemistry. For AOC, there are sim-
ulators such as MARS [Vollmar and Sanderson 2006] and EDUMips [Patti et al. 2012].
However, these implementations lack one feature or another, such as not providing vi-
sualization of the circuit executing the code, or the lack of interactivity and the ability
to modify the circuit. Furthermore, open implementations increase the possibilities for
adaptations and modifications for educational and research use [Carro 2021].

To deal with these problems, and based on previous re-
sults [Rodrigues et al. 2024], we present an Open Educational Resource (OER)

1https://phet.colorado.edu/



with a focus on visualization and interactivity with the simulated content. This is
achieved by using a digital circuit simulator called logisim-evolution 2. It was chosen
for its ease of use and ability to interact with the circuits, as well as the possibility of
visualizing the operation of these circuits, showing the high or low states of the wires, or
the contents of registers or wires that pass multiple bit values.

The OER in this work covers content ranging from the implementation of
logic gates using transistors to the construction of a MIPS data path with a five-
stage pipeline, mostly inspired by the descriptions in the book Patterson and Hen-
nessy [Patterson and Hennessy 2013]. All the implementations and contents of the mate-
rial are available on the GitHub repository3 and also on the project’s landing page4.

The main feature of this work is its breadth of content, ranging from the explo-
ration of digital logic concepts to content covered in AOC. And all the material being
interactive, with the user being able to explore its workings by modifying inputs and out-
puts, and even altering the circuits completely, if they so wish. The comprehensiveness
of the content allows the user to explore how each component of the architecture works,
eliminating “black box” effects in understanding, and the interactivity allows exploration
and experimentation, which can lead to a greater understanding of how the circuits work.

2. Objectives

In the study carried out in [Fernandes and Silva 2017], it was possible to observe an im-
provement in the grades obtained by the students in the AOC and Operating Systems
subjects. In addition, the students reported that the use of a simulator made learning AOC
easier and increased their motivation in the subjects.

Based on this, we intend to collaborate with the state of the art by bringing material
focused on visualization and interactivity with the circuit that can be used in conjunction
with traditional classes. This situation touches on concepts such as Dual Coding Theory,
which explains how the brain uses verbal and non-verbal channels to process and store
information [Clark and Paivio 1991].

The material covers fundamental knowledge of digital circuits, such as the con-
struction of logic gates, as well as more complex circuits, and progresses towards the
implementation of a MIPS processor with a five-stage pipeline. Starting from basic con-
cepts and increasing the degree of complexity of the implementations has foundations
on the theory known as Elaborative Encoding, which describes that memories are better
stored when connected to previously known content [Bradshaw and Anderson 1982].

With the material in the format presented, students can explore the workings of the
various components, such as memory, registers, or muxes, individually, as if they were
opening “black boxes” whenever they open the circuit file that implements each of them.
In this way, we hope that students will better retain the content they have studied and be
able to use this knowledge in different areas of computing.

2https://github.com/logisim-evolution/logisim-evolution
3https://github.com/ChristoferLv/Aperture-Releases
4https://christoferlv.github.io/ProjetoAperture/



3. Methodology
The material was implemented in the logisim-evolution software, which is a digital cir-
cuit simulator. It allows you to build circuits by dragging and dropping components that
are natively available in the software, such as logic gates, multiplexers, and registers. Al-
though the software allows the use of customized components implemented in Java, the
material in this work uses only the native components, in order to avoid compatibility
problems and make it easier to use.

The material provided is organized in the form of various circuit files made in
Logisim that cover some specific content. For example, in the materials on digital circuits,
you can find circuits on arithmetics, and when this file is loaded into Logisim, you can
find the sub-circuits that implement each of the arithmetic operations. The circuits are all
available on the GitHub repository, or on the project’s landing page, designed to facilitate
access to the resources, which also has a gallery tab with images of each of the circuits.

The implementations and design of the MIPS processor built at the end of the
material trail are strongly based on the descriptions found in the book by Patterson and
Hennessy [Patterson and Hennessy 2013]. This choice is made because the authors were
primarily responsible for formalizing the dissemination of the RISC philosophy and the
creation of MIPS processors.

4. Results
From this process, the results obtained are an OER, available on the GitHub repository,
which can be used to help teach AOC and other digital circuit concepts. The material
focuses on visualization and interactivity with the content being studied, supported by the
capabilities of the simulator used to build the circuits.

The material consists of two main groups, basic digital circuit components and
implementations of the MIPS datapath. The first group contains circuits that explore
eight different concepts: logic gates, logic equivalences using NAND and NOR, encoders,
multiplexers, flip-flops, registers, arithmetic, containing implementations for the 4 basic
arithmetic operations and static memories (SRAM).

The group of MIPS datapath implementations includes “partial datapaths” and
“complete datapaths”. The “partial datapaths” have no control unit and are made up of
seven implementations, six of which are a circuit sufficient to perform the add, addi,
beq, j, lw and sw operations separately, in which the student can execute code with these
instructions, while observing the resources required to implement them. As these are in-
cremental implementations, the last implementation unites all the other 6, but still without
a control unit, so it is up to the user to turn on the control signals correctly so that they
can explore and understand the role of this component.

In the “complete datapaths” section, there are eight implementations, one of which
is a single-cycle MIPS datapath with a set of twenty instructions, specified in the docu-
mentation on the project’s GitHub, and the other seven implementations apply the pipeline
technique. These progress gradually, and in different combinations, exploring the differ-
ent techniques for improving datapath performance, according to the specifications de-
scribed in [Patterson and Hennessy 2013].



With the material developed, a teacher can use it to complement the process of
teaching digital logic or computer architecture as supplementary material, used in con-
junction with class explanations, showing how the components work as soon as the con-
tent is explained. Another possibility is to give students activities that encourage them to
explore the material’s visual and interactive capabilities. For example, ask students to try
out some of the circuits and try to understand their behavior before or during a lesson.

5. Conclusion
This work presents an OER that covers the fundamentals of digital circuits and computer
architecture. In the material, various traditional digital circuit components are imple-
mented, and the degree of complexity increases until it reaches the implementation of a
MIPS processor with a 5-stage pipeline with various performance gain techniques, fol-
lowing the specifications of the Patterson and Hennessy’s book.

The circuits implemented in the material prioritize the understanding rather than
any optimization that can be done to save components. This material can be used freely by
teacher or students as an additional resource that brings a visual and interactive component
to facilitate the understanding of the concepts covered in classes. In the future, we intend
to evaluate with students the effectiveness of using the material.

In future work, the material will implement the RISC-V ISA, that will be available
alongside the current one. RISC-V adopts open hardware standards that boost multiple
possibilities for education, allowing for different versions of a CPU project. In addition,
the open hardware attracts government and enterprise interests in the RISC-V standards.

References
Bradshaw, G. L. and Anderson, J. R. (1982). Elaborative encoding as an explanation of

levels of processing. Journal of Verbal Learning and Verbal Behavior, 21(2):165–174.

Carro, L. (2021). Hardware aberto, uma análise de possibilidades. Computação Brasil,
46(46):29–32.

Clark, J. and Paivio, A. (1991). Dual coding theory and education. Educational Psychol-
ogy Review, 3:149–210.

Fernandes, S. and Silva, I. (2017). Relato de experiência interdisciplinar usando mips.
International Journal of Computer Architecture Education, 6:52–61.

Patterson, D. A. and Hennessy, J. L. (2013). Computer Organization and Design, Fifth
Edition: The Hardware/Software Interface. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 5th edition.

Patti, D., Spadaccini, A., Palesi, M., Fazzino, F., and Catania, V. (2012). Supporting Un-
dergraduate Computer Architecture Students Using a Visual MIPS64 CPU Simulator.
IEEE Transactions on Education, 55(3):406–411.

Rodrigues, C., Gonçalves, R. A., and Fabrı́cio Filho, J. (2024). Mips processor imple-
mented in a visual simulator for educational use. International Journal of Computer
Architecture Education, 13(1):33–42.

Vollmar, K. and Sanderson, P. (2006). Mars: an education-oriented mips assembly lan-
guage simulator. SIGCSE Bull., 38(1):239–243.


