
Simulation-Driven Portfolio Scheduling for Scientific
Workflows

João Antonio Soares1, Gerson Geraldo H. Cavalheiro1

1 Centro de Desenvolvimento Tecnológico (CDTec) – Universidade Federal de Pelotas (UFPel)

{jansoares,gerson.cavalheiro}@inf.ufpel.br

Abstract. This paper proposes portfolio scheduling approach for scientific
workflow management systems (WMS). The goal is to improve scheduling de-
cisions by dynamically selecting suitable scheduling policies during workflow
execution. The portfolio integrates multiple task scheduling and resource allo-
cation strategies, considering both computational and network characteristics.

1. Introduction
Distributed systems form the backbone of modern scientific research, where workloads
are predominantly heterogeneous workflows that combine data-intensive and compute-
intensive jobs. WMS automate application deployment and execution, inherently making
scheduling decisions. Scheduling policies help WMS efficiently distribute workloads and
minimize execution time. However, managing highly heterogeneous workflows with fluc-
tuating resource requirements and potential system failures remains a complex challenge.

One approach to address this challenge is portfolio scheduling, described by
[Deng et al. 2013]. Portfolio scheduling dynamically selects and applies a scheduling pol-
icy at runtime from a predefined set of policies, called a portfolio. This work builds upon
the Simulation-Driven Portfolio Scheduling (SDPS) approach [Casanova et al. 2023].
While their work successfully implemented SDPS in a simulated environment, it did not
address key challenges related to monitoring runtime resources in production WMSs. Ad-
ditionally, it did not consider the constraints imposed by the static planning phase of such
systems, which often limits the feasibility of dynamic scheduling in real-world scenarios.

The objective of this work is to present the design and implementation of a SDPS
component integrated into a WMS, with a focus on runtime system integration. The
primary challenge addressed is integrating the online simulator with the core components
of the WMS to enable dynamic scheduling adjustments. Section 2 details the high-level
description of the architecture and integration.

2. Structure of Proposed Solution
A portfolio scheduling mechanism, utilizing discrete event simulation to determine op-
timal scheduling policies, is proposed. This mechanism will be integrated into Pegasus
WMS (https://pegasus.isi.edu) and invoked during workflow execution via
the pegasus-plan command. The implementation will leverage Python and HTCon-
dor (https://htcondor.org) services, the underlying middleware behind Pegasus,
through its Python bindings. The system comprises the following key components:

• System Monitoring: The system state is continuously updated using HTCon-
dor’s command line monitoring tools (e.g., condor q and condor history)



at fixed checkpoint intervals. This querying data feeds into a simulation module
that evaluates various scheduling policies based on workload conditions.

• Online Simulator: This component evaluates the performance of different
scheduling policies under current workload conditions. It receives the system
status and user-defined workload as input, executing simulations for each policy
in the portfolio. The primary evaluation metric initially focuses on minimizing
makespan, although future iterations may incorporate additional user-defined per-
formance metrics. The SimGrid toolkit is employed for discrete event simulation,
though alternatives may be considered.

• Policy Portfolio: The portfolio of scheduling policies is structured into two cate-
gories: task selection and resource selection. Network infrastructure characteris-
tics are also considered into resource selection for task submission.

• WMS Middleware Interfacing: The SDPS module operates as a command line
program executed when the WMS launches a workflow. Integration with Pegasus
is planned, potentially through a pre-execution script during the planning phase.
Real-time scheduling modifications require interaction with the HTCondor mid-
dleware. This will be achieved by interfacing with the schedd job queue daemon
and modifying job scheduling properties via HTCondor’s ClassAds properties.

The portfolio scheduling mechanism activates before the submission of the first
workflow task. The simulation predicts the most efficient scheduling policy based on
current system conditions, as described in [McDonald et al. 2024]. Subsequent portfolio
scheduling rounds are triggered at predefined execution thresholds (e.g., 25% workflow
completion) to recalibrate the strategy and mitigate prediction errors.

3. Future Work
Next efforts will focus on expanding the policy portfolio with more sophisticated ap-
proaches, such as nature-inspired meta-heuristic optimization techniques. Benchmark
evaluations will be conducted to compare the proposed system against other scheduling
algorithms. Additionally, extensions to incorporate multi-objective optimizations, includ-
ing energy efficiency and fault tolerance, are planned.

References
Casanova, H., Wong, Y. C., Pottier, L., and da Silva, R. F. (2023). On the feasibility

of simulation-driven portfolio scheduling for cyberinfrastructure runtime systems. In
Klusáček, D., Julita, C., and Rodrigo, G. P., editors, Job Scheduling Strategies for
Parallel Processing, pages 3–24, Cham. Springer Nature Switzerland.

Deng, K., Song, J., Ren, K., and Iosup, A. (2013). Exploring portfolio scheduling for
long-term execution of scientific workloads in iaas clouds. In Proceedings of the In-
ternational Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’13, New York, NY, USA. Association for Computing Machinery.

McDonald, J., Dobbs, J., Wong, Y. C., Ferreira da Silva, R., and Casanova, H. (2024). An
exploration of online-simulation-driven portfolio scheduling in workflow management
systems. Future Generation Computer Systems, 161:345–360.


