
Exploring Offloading Strategies in the Analysis of Vital Signs
in Fog Computing

Thiago Henrique Thomas1, Rodrigo da Rosa Righi1

1Universidade do Vale do Rio dos Sinos (UNISINOS)
São Leopoldo – RS – Brazil

thiagothomas@edu.unisinos.br, rrrighi@unisinos.br

Abstract. This paper proposes the Decentralized Adaptive Priority-based Hi-
erarchical Offloading (DAPHO) model for offloading strategies in fog comput-
ing applied to healthcare in smart cities. The model handles large volumes of
IoT data by prioritizing critical signals in the fog while less critical ones are
processed in the cloud. Unlike centralized or single-path approaches, DAPHO
enables autonomous offloading decisions among fog nodes hierarchically orga-
nized (e.g., neighborhoods, cities). The flexibility of multiple destinations and
dynamic thresholds improved response time and prioritized signal processing,
although fixed thresholds showed better performance in some scenarios.

1. Introduction
The Internet of Things (IoT) has transformed various domains, from Industry 4.0 to
smart cities and healthcare, by enabling real-time data collection and intelligent decision-
making. In healthcare, IoT devices such as smartwatches and sensors facilitate continuous
monitoring of vital signs, helping in the prevention and management of critical condi-
tions [Inzole and Sonwane 2024]. However, to ensure the effectiveness of these critical
services, it is essential to minimize response time, and maintain reliability so that people
are always assisted, especially in emergency situations [Das and Inuwa 2023].

Therefore, this work addresses the problem of efficient task offloading in
Edge/Fog Computing environments for public healthcare and smart cities. Traditional
cloud-based processing introduces latency, while existing offloading strategies often lack
decentralization and multiple routes. To tackle this, we propose DAPHO (Decentralized
Adaptive Priority-based Hierarchical Offloading), a model that optimizes resource allo-
cation and prioritizes vital sign processing. Unlike previous approaches, DAPHO enables
hierarchical and decentralized offloading, where Fog nodes dynamically transfer tasks to
parent or sibling nodes based on workload and urgency. This enhances response times
and system reliability, particularly in emergency scenarios.

2. Related Work
Several studies have explored task offloading in Edge and Fog Computing environments,
focusing on optimization techniques and resource management. Reinforcement Learning
(RL)-based approaches, such as [Robles-Enciso and Skarmeta 2023, Zare et al. 2023],
utilize Deep RL agents to dynamically allocate tasks based on resource availability, la-
tency, and priority constraints. These methods enhance adaptability by allowing nodes
to learn from their environments, reducing reliance on static offloading strategies. Ad-
ditionally, Federated Learning (FL) is employed to minimize data transmission overhead



while refining RL models locally. Other works prioritize deadline-aware scheduling and
queue-based mechanisms. For instance, [Adhikari et al. 2020, Sarkar et al. 2022] pro-
pose heuristic-based task allocation to ensure time-sensitive tasks are processed in Fog
nodes while deferring non-critical tasks to the cloud.

Latency and load-balancing strategies have also been extensively studied, fo-
cusing on real-time network conditions to optimize offloading decisions. For exam-
ple, [Mattia et al. 2022, Phan et al. 2021] propose dynamic selection of offloading des-
tinations based on factors such as hop distance, bandwidth, and node congestion lev-
els. Some studies have also explored decentralized architectures for task offloading.
[André Setti Cassel et al. 2024] introduces a tree-based model for prioritizing emergency
cases through recursive vertical offloading.

3. DAPHO Model
In this chapter, a new model is proposed for offloading operations in fog computing en-
vironments to optimize response time and distribute the workload. The DAPHO model
(Decentralized Adaptive Priority-based Hierarchical Offloading) will perform this oper-
ation in a decentralized manner on each node in the network. This enables both vertical
offloading to a parent node and horizontal offloading to a sibling node within the tree
structure, while also allowing dynamic resources thresholds and prioritization of both
users and services to be executed

3.1. Overload Detection

To handle overloading in a fog node within the network, thresholds will be applied to the
CPU and memory metrics of the nodes. This will be achieved using an algorithm inspired
by the work of [da Rosa Righi et al. 2018], which introduces an approach related to TCP
congestion control for dynamically adjusting thresholds, referred to as Live Thresholding.
Periodic observations of resource utilization are collected, based on an adapted strategy
from [da Rosa Righi et al. 2018]. These observations focus on a specific resource within
a given node, applying techniques like Simple Exponential Smoothing (SES) or Weighted
Moving Average.

With this approach, thresholds can now be dynamically adjusted according to the
system’s load variations. In the implementation of the DAPHO model, when the current
system load is higher than the previous load, the Upper Threshold must be reduced, as this
indicates an increasing workload. Conversely, when the current load is lower than the pre-
vious load, the workload is decreasing, allowing for an increase in the Lower Threshold.
If the system load exceeds the Upper Threshold, all incoming messages will be offloaded
until the overloaded resource drops below the Lower Threshold. At this point, the thresh-
olds can be restored to their initial values. Similarly, if the system load falls below the
Lower Threshold, both thresholds can be reset.

3.2. Offload Decision

To make offloading decisions, two heuristics are applied. The first heuristic consists of
ranking signals based on user and service priority. If a signal’s ranking exceeds 75% of all
rankings on the node, it will be executed locally. If the ranking is below 25%, offloading
is performed. Rankings between these thresholds result in inconclusive decisions. The



ranking calculation adapts the approach from [André Setti Cassel et al. 2024], incorpo-
rating a dynamic weight factor (γ) for users to prevent multiple offloads for the same user
through time.

When the ranking heuristic results in an inconclusive decision, a second heuristic
evaluates service duration using the Exponential Recency Weighted Average (ERWA)
method, prioritizing more recent observations. By giving greater weight to shorter-
duration services, the system ensures faster processing for time-sensitive tasks. Therefore,
dynamic thresholds for CPU and memory are evaluated first, followed by the ranking-
based heuristic and, if necessary, the service duration heuristic refines the decision.

3.3. Destination Node Selection: vertical or horizontal offloading
Furthermore, is necessary to select an apropriate node. This selection follows a greedy
approach, identifying the node with the most available resources. Periodically, the parent
node gathers resource and metric information from available child nodes. Nodes that are
not busy respond with their current resource availability. This information is then relayed
to the child nodes. On the overloaded node, calculations are performed to determine
which destination node would result in the greatest resource growth. That way the process
can either perform vertical offloading (to the parent node) or horizontal offloading (to a
sibling node), continuing this process recursively until the cloud is reached.

This approach ensures that the most suitable destination node is selected based on
resource growth potential. The process evaluates critical resources such as CPU, memory,
and bandwidth, assigning specific importance to each resource type. The overloaded node
calculates a score for each potential destination, considering both the relative growth of
available resources and their assigned importance.

4. Results
The experiments demonstrated that allowing offloading to multiple destinations (both sib-
ling and parent nodes) reduced the average execution time and increased the number of
tasks processed within the fog layer compared to the cloud. When offloading included
sibling nodes, the average execution time remained below 0.1 seconds for all priority
levels. In this configuration, most tasks were executed within the fog, achieving rates
between 98.8%, 99.1%, 99.3%, 99.7% and 99.9% across priorities 1 to 5. Conversely,
without offloading to sibling nodes, the average execution time ranged between 1 and 2
seconds, and fog execution rates dropped to between 83.6%, 85.0%, 88.8%, 92.3% and
96.9% for the same priorities.

The use of dynamic thresholds showed mixed results. While they did not out-
perform fixed thresholds, they prevented node overload, demonstrating greater resilience
under heavy workloads. However, with fixed thresholds, some nodes became overloaded
toward the end of the experiments, leading to higher offloading rates. If the tests were
extended, the average execution time would likely increase, and the number of tasks pro-
cessed in the fog layer would reduce. Additional tests with workloads evenly distributed
across all nodes showed no significant differences in performance.

5. Conclusion
This work introduces the DAPHO model, which integrates decentralized offloading and
dynamic thresholds for smart cities. Tasks can be offloaded both horizontally (to sibling



nodes) and vertically (to parent nodes), enabling faster processing of high-priority vital
signs—critical in healthcare scenarios where timely responses to emergencies like car-
diac arrests can be life-saving. This research is part of the Amazon AWS Universities
VitalSigns++ project, coordinated by Professor Rodrigo da Rosa Righi. Future directions
include refining dynamic thresholds, prioritizing critical cases, incorporating latency as a
decision factor, and testing in larger topologies. Additionally, reducing communication
overhead through distributed algorithms like the Gossip Protocol could enhance scalabil-
ity.

References
Adhikari, M., Mukherjee, M., and Srirama, S. N. (2020). Dpto: A deadline and priority-

aware task offloading in fog computing framework leveraging multilevel feedback
queueing. IEEE Internet of Things Journal, 7(7):5773–5782.

André Setti Cassel, G., da Rosa Righi, R., André da Costa, C., Rosecler Bez, M., and
Pasin, M. (2024). Towards providing a priority-based vital sign offloading in healthcare
with serverless computing and a fog-cloud architecture. Future Generation Computer
Systems, 157:51–66.

da Rosa Righi, R., Rodrigues, V. F., Rostirolla, G., André da Costa, C., Roloff, E., and
Navaux, P. O. A. (2018). A lightweight plug-and-play elasticity service for self-
organizing resource provisioning on parallel applications. Future Generation Com-
puter Systems, 78:176–190.

Das, R. and Inuwa, M. M. (2023). A review on fog computing: Issues, characteristics,
challenges, and potential applications. Telematics and Informatics Reports, 10:100049.

Inzole, A. and Sonwane, S. (2024). Iot in healthcare: Applications challenges. In
2024 IEEE 3rd International Conference on Electrical Power and Energy Systems
(ICEPES), pages 1–5.

Mattia, G. P., Magnani, M., and Beraldi, R. (2022). A latency-levelling load balancing
algorithm for fog and edge computing. In Proceedings of the 25th International ACM
Conference on Modeling Analysis and Simulation of Wireless and Mobile Systems,
MSWiM ’22, page 5–14, New York, NY, USA. Association for Computing Machinery.

Phan, L.-A., Nguyen, D.-T., Lee, M., Park, D.-H., and Kim, T. (2021). Dynamic fog-
to-fog offloading in sdn-based fog computing systems. Future Generation Computer
Systems, 117:486–497.

Robles-Enciso, A. and Skarmeta, A. F. (2023). A multi-layer guided reinforcement
learning-based tasks offloading in edge computing. Computer Networks, 220:109476.

Sarkar, I., Adhikari, M., Kumar, N., and Kumar, S. (2022). Dynamic task placement for
deadline-aware iot applications in federated fog networks. IEEE Internet of Things
Journal, 9(2):1469–1478.

Zare, M., Elmi Sola, Y., and Hasanpour, H. (2023). Towards distributed and autonomous
iot service placement in fog computing using asynchronous advantage actor-critic al-
gorithm. Journal of King Saud University - Computer and Information Sciences,
35(1):368–381.


