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Abstract—Machine Learning is being used increasingly in
different application areas. Physics-Informed Neural Networks
(PINN) stand out, adapting neural networks to predict solutions
to Physics phenomena. Incorporating Physics knowledge into
the loss function of a neural network, PINNs revolutionize the
solutions of partial differential equations. Considering the lack of
support for analytics and reproducibility of the trained models, in
this paper we propose the capture and use of provenance data,
aimed at the analysis of PINN models. We conducted experi-
ments using TensorFlow and DeepXDE, in a high-performance
computing environment. Our experiments show the contributions
of these provenance queries in different PINN applications.

Index Terms—provenance, physics-informed neural network

I. INTRODUCTION

Deep neural networks (DNNs) have been effectively applied
to a variety of problems [1] to assist decision-making or
predict the future behavior of new data [2]. One of the recent
approaches for DNNs is Physics-Informed Neural Networks
(PINNs) which are revolutionizing the approaches to problems
governed by partial differential equations (PDEs) in Science
and Engineering [3]. The Physics is informed during training
by adding new components to the loss function, reflecting, for
example, the residue of the PDE and its boundary conditions.

In a recent survey, Cuomo et al. [4] present current chal-
lenges for PINN implementation like boundary conditions
management, PINN architecture design, and optimization as-
pects. PINNs are computing intensive and require thousands
of epochs to converge, using supercomputers, GPUs, and tools
like Horovod to manage the parallel execution [5]. PINNs can
be designed and trained using classic DNN libraries such as
TensorFlow and PyTorch. However, tools like AutoML [6] are
incipient for PINNs, which makes PINN model selection quite
complex. In addition, these DNN libraries do not automatically
register and track the Physics components of the loss function.
These values are essential to evaluate the accuracy of the
trained model. To analyze hyperparameters with these new
PINN loss components, users are required to manually define
configurations to capture, register and integrate them into the
other metrics [7]. For instance, to track the values of the loss
components, the PINN experts have to configure tools such
as TensorBoard, using the TensorFlow data summarization
routines. This configuration requires programming a script to
extract and aggregate information from different sources and
persist them in CSV files. Furthermore, in choosing the best
PINN model, it is necessary to plan the organization of these

files/directories of several model metrics and configurations.
Aggregating these data for querying over different PINN
models is far from trivial. In addition, users could create their
own data representation, generating heterogeneity that leads to
extra work to compare trained models.

Supporting humans in the interactive process of creating
large-scale DNN models is necessary, according to [7]–[9].
In the case of PINNs, users typically steer the execution,
and this support is even more important. One way to help
track the PINN’s training process is to use a provenance
service, to capture the hyperparameters and PINN metrics,
persist data with a DBMS, and run queries. Provenance data
describes the training execution by relating data, process,
parameters, hyperparameters, and metrics following a standard
schema. However, most provenance systems are not prepared
to manage concurrent provenance calls from distributed and
parallel sources in a supercomputer or cloud environment [10].
DNNProv [11] is a library for provenance data services in
DNNs, W3C PROV1 compliant, that allows for extensibility.
The provenance data captured by DNNProv during training
can support the analysis of data, metadata, and the data deriva-
tion path. Based on queries on aggregated data at runtime, it
complements graphic tools and integrates trained data from
different hyperparameter configurations. DNNProv’s source
code can be accessed at https://github.com/dbpina/dnnprov.
However, DNNProv does not represent PINN components or
work with specific PINN development frameworks.

Preliminary evaluations of using DNNProv for PINNs are
presented in [12] using a grid cluster of CPU-GPU hybrid
computing mode and in [13] using GPU in a personal com-
puter. However, programming this extensibility for PINNs is
not simple and can lead to heterogeneity in this representation.

We present PINNProv2 as an extension of DNNProv to
facilitate the management of provenance data in PINN scripts.
PINNProv helps the user interaction when informing which
are the input hyperparameters, loss function components, and
output metrics related to the PINN’s training. This work aims
to address the problem of model evaluation in PINNs using
different frameworks and on a larger scale. We explore the
generation of provenance data and its use through queries
to monitor the evolution of PINN training, complementing

1https://www.w3.org/TR/prov-overview/
2https://github.com/lyncoln/PINNprov
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typical visualization tools. Our experiments show the ca-
pability of PINNProv to represent provenance and PINN
metrics in frameworks like TensorFlow, which is popular for
training DNNs, and DeepXDE, which is designed specifically
for PINNs. We explore solving PDEs in different problems,
training PINNs with different architectures, and varying their
complexity at the Santos Dumont supercomputer3.

This paper is structured as follows. Section II presents theo-
retical concepts about PINNs. Section III discusses the use of
provenance in PINNs. Section IV shows PINNProv supporting
two experiments with different training frameworks. Section V
discusses the existing approaches for provenance data capture
in PINNs and ML. Section VI concludes this paper.

II. PHYSISCS INFORMED NEURAL NETWORKS - PINNS

Proposed by Raissi et al. [3], PINNs are neural networks
trained to solve supervised learning tasks while respecting
any given law of Physics described by general nonlinear
PDEs. PINNs can effectively solve direct and inverse problems
associated with PDEs, as shown in Equation 1.

F(u(z); γ) = f(z) z ∈ Ω

B(u(z)) = g(z) z ∈ ∂Ω
(1)

The domain is defined by Ω ⊂ Rd with boundary ∂Ω. The
vector z informs the space-time coordinates, u represents the
unknown solution, and γ is the set of parameters related to
Physics. The function f is responsible for identifying the prob-
lem input data and F is the non-linear differential operator.
The B operator indicates the initial or boundary conditions
related to the problem and g the boundary function. Equation
1 describes both direct and inverse physical problems. Direct
problems aim to find the function u for all z while γ is the set
of Physics-specific parameters. As for the inverse problems, γ
is also determined from the data [4].

In PINNs, u(z) is estimated using a DNN with a set of
parameters θ so that ûθ(z) ≈ u(z). PINNs approximate PDE
solutions by training a DNN that aims to minimize a loss
function that incorporates physical knowledge of the problem,
such as terms that reflect the boundary conditions, domain,
and PDE residence at selected points in the domain.

Inspired by classical DNNs [14], in Figure 1 we propose
a specification for the PINN life cycle. The PINNs life cycle
also involves model configuration, data preparation, split sets
into training, validation and test sets, start training, testing
within an interval, and making steering (tune) actions during
training. Similarly, the user also adjusts the model and repeats
the whole process until the results are satisfactory.

Our adaptation of the classic life cycle for PINNs starts
with modeling the problem, which is governed by a function
f(x) representing a PDE, and determining the way Physics is
going to be constrained into the NN. We represent the process
of “Inform Physics”, by including the activation functions
that best serve the problem, defining boundary and initial
conditions, the methods to generate collocation points, loss

3https://sdumont.lncc.br/

function components, optimizer, etc. Since the problems that
PINNs aim to predict do not have large amounts of data, the
user might use methods to generate and regularize data through
mathematical simulations. In the regularization process, both
the inputs and the regularization methods impact the model.
In the data preparation process, PINNs may require using real
data (data from the problem environment) or/and regularizing
data using the governing PDE and/or boundary and initial
conditions. The raw data format is often binary or domain-
specific, so there is a data preparation process, where the data
can go through a series of transformations to a format that
fits and serves the model training better. This data preparation
might impact the model results, so provenance helps to keep
track of the whole process to allow posterior analysis and
reproducibility.

III. PINNPROV: PROVENANCE FOR PINNS

Provenance in DNN life cycle is an important asset for
reproducibility, interpretability and contributes to the quality
and reliability of the model [15]–[20]. Provenance associates
the data (entities) with the algorithms/programs (activities) that
transform these data, as well as the agents (humans, teams)
associated with the entities and activities. These relationships
allow for tracing the model back to its data preparation
activities [21]. However, PINNs have more complex artifacts,
like the loss function coefficients, which need to be represented
and tracked.To the best of our knowledge, there is a lack of
provenance support for PINNs.

PINNs work with multi-coefficient loss functions, genera-
tion methods for the collocation points and data, and other
metrics that are not trivial to represent. Depending on the
complexity of the PDEs, PINNs can incorporate two NNs to
find solutions. In the absence of specific approaches to collect
and analyze provenance in PINNs, users have to save data into
files or adapt frameworks/libraries to collect it automatically,
but those are time-consuming tasks that require manual effort,
the data saved can be limited by the framework that has its
own data representation which increases the complexity for
data aggregation and analysis.

In addition to adding quality and reproducibility to the
trained models, provenance traces and metadata can help to
monitor the training, if provenance is made available during
the training. This monitoring, enhanced by querying aggre-
gated data, helps the user to assess intermediate results and
gain insight to make adaptations at runtime [7]. Provenance
represents complex relationships of the life cycle artifacts,
complemented with model metrics and epochs, the chosen hy-
perparameter values, environment configuration, components
of the loss function that guide the Physics, their weights, etc.

A. Design of PINNProv

PINNProv aims to bolster provenance support for the
PINNs’ life cycle. PINNProv extends DNNProv’s default
metrics provenance to capture PINN metrics. PINNProv keeps
the W3C PROV-compliance, being able to share, persist,
and analyze captured provenance data. Using PINNProv, the
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Fig. 1: Physics Informed Neural Networks life cycle. The grey shapes are static objects that might be outputs or inputs of
activities, and the white rectangles are activities (i.e. data transformation). The text on the edges is the possible output from
an activity that may be input for the next activity. The dotted components indicate optional activities/outputs.

user only needs to pass through pre-defined lists which are
the hyperparameters and evaluation metrics to be captured
during the PINN training, particularly the loss of the boundary
conditions, residuals of the PDE, and other parameters relevant
to fine-tuning PINNs. In addition to these typical PINN data,
PINNProv can capture other PINN data in its PROV schema.
PINNProv services can be invoked from PINN training frame-
works using callback functions.

B. DeepXDE and PINNProv Integration

DeepXDE [22] is a Python library for scientific machine
learning and PINNs. It aims to serve both as an educational
tool and as a research tool for problem-solving in Computer
Science and Engineering. Its implementation is simple, which
justifies its popularity among users developing PINNs. Deep-
XDE is currently used with five training libraries in its back-
end: TensorFlow, PyTorch, JAX, and PaddlePaddle.

DeepXDE does not have a native solution for persisting
provenance data during the training of its models. PINNProv
can fill this gap without changing DeepXDE code. To do
so, one must simply create a class object inheriting the
deepxde.callbacks.Callback class. In this module, PINNProv
can use DeepXDE methods that are started during the key
steps of the PINN model training. The following code is an
example of how this instrumentation is done. For example, the
code statement to be executed at the beginning of model train-
ing (on train begin); at the end of training (on train end);
and at the end of each epoch (on epoch end). These steps
identify the places where the provenance data needs to be
defined and captured by PINNProv, as they evolve along the
training. When initializing the callback class, given by the

init method, PINNProv starts and sets provenance data to
be captured like the hyperparameters, weights for the PINN
components of the loss function, and output metrics like the
values for each component of the loss function during the
training.

class PINNProv_calls(deepxde.callbacks.Callback):
def __init__(self):

super().__init__()
self.epoch = 0
self.dataflow_tag = "deepxde"
self.exec_tag = self.dataflow_tag + datetime.now()
df = Dataflow(self.dataflow_tag,
['STR_OPTIMIZER_NAME', 'NUM_LEARNING_RATE',
'NUM_EPOCHS', 'NUM_BATCH_SIZE', 'STR_LAYERS',
'NUM_WEIGHT_LR', 'NUM_WEIGHT_LB', 'NUM_WEIGHT_LD'],
['NUM_epoch', 'NUM_time_elapsed', 'NUM_LOSS',
'NUM_LR_train', 'NUM_LB_train', 'NUM_LD_train',
'NUM_Q_train_error', 'NUM_U_train_error'])
df.save()

def on_train_begin(self):
(...)
self.t1 = Task(1, self.dataflow_tag,
self.exec_tag, "TrainingModel")
self.tf1_input = DataSet("iTrainingModel",
[Element([opt_name, learning_rate, epoch, batch,
layers_list, weight_lr, weight_lb, weight_ld)])
self.t1.add_dataset(self.tf1_input)
self.t1.begin()

def on_train_end(self):
self.t1.end()

def on_epoch_end(self):
if(self.epoch % 10 == 0):

(...)
tf1_output = DataSet("oTrainingModel",
[Element([epoch, elapsed, loss_value, lr_value,
lb_value, ld_value, err_q_train, err_u_train])])
self.t1.add_dataset(tf1_output)
self.t1.save()

self.epoch += 1

At the DeepXDE method on train begin, PINNProv per-
sists the values referring to the provenance input entity named
iTrainingModel. At the on epoch end method, PINNProv
persists the values regarding the training output metrics in the
provenance output entity named oTrainingModel. PINNs are
generally trained for an extensive number of epochs, the user
can customize the interval that they want to persist the output
metrics, e.g. at every 10 epochs. Finally, in on train end,
PINNProv finalizes the provenance capture related to the
training activity.

With the callback type object created, PINNProv is then
ready to be used with DeepXDE for any PINN specification
and in any of its five development back-ends. The user just

18



has to include PINNProv in the callback parameter of the
DeepXDE model train method: model.train(iterations, call-
backs=[PINNProv calls()],batch size). Similarly, PINNProv
can be integrated into other frameworks that accept callbacks.

Alternatively, the user can build the object of type callback
by persisting the data of each model using, for example, the
Pandas library. However, the organization of the files would
be up to the user and would not have a pre-defined standard
representation. The user would also have to create a new
script to associate the files that persist the data related to
the input hyperparameters and output metrics of each model
configuration for comparative analyses. Aggregating data from
these files is not simple, and following relationships is even
harder without IDs, joins and a query language.

IV. EXPERIMENTAL EVALUATION

We used the Santos Dumont supercomputer (SDumont),
which has approximately 5.1 Petaflop/s of processing capacity,
using a hybrid configuration of computational nodes that in-
corporate different parallel processing architectures. SDumont
has a Lustre parallel file system, with a raw storage capacity
of about 1.7 PB. In our experiments, we used one partition
named GDL, which is specialized for artificial intelligence
tasks. GDL has two processors Intel Xeon Skylake Gold 6148
2,4GHz with 20 cores, eight GPUs NVIDIA Tesla V100-16GB
with NVLink, and 384GB of RAM.

A. PINN Eikonal

PINNProv was used with a PINN that solves the Factored
Eikonal Equation (FEE) [12], which describes phenomena like
wave propagation for acoustic and elastic media [23]. Figure 2
shows that two neural networks were used, one to estimate the
transit time (TT), related to the direct problem, and the other
to estimate the wave propagation velocity (Vel), related to the
inverse problem. These networks are indirectly connected for
the calculation of the loss function.

Fig. 2: PINN Eikonal scheme, where ϕ(xs, xr) represents the
transit times, and υ(xr), the propagation speed of the wave in
the acoustic medium. They are approximated by two different
neural networks, their approximations are denoted by ϕ̃(xs, xr)
and υ̃( xr) respectively. Those approximations are then fed to
the loss components related to the data assimilation, boundary
and initial conditions, and the PDE residual [12].

The input dataset refers to seismic and ground-penetrating
radar data. The metric is R2, which is known as the coefficient
of determination. The weights w of the loss function are

defined as in Equation 2. The loss function L has three
components related to LD the data assimilation, LBC as
boundary and initial conditions, and LR as the PDE residual.

L(θ; T ) = LR(θ; TR) + LBC(θ; TBC) + 25 · LD(θ; TD) (2)

The user assigned values for the hyperparameters, based
on past experiments. The hyperparameters batch size = 3000,
number of epochs = 400000, initial learning rate = 0.001, and
final learning rate = 0.000018 were used with the exponential
decay function, with decay = 0.99.

B. Provenance queries

PINNProv assigns an identifier (ID) for the configurations
of hyperparameters that are being used to train the PINN. It
captures the provenance of the training output information
for each configuration, persisting the data at the database
at an interval of 100 epochs. The experiment was divided
into two rounds that evaluated five and four configurations,
respectively. In the first round, the user explores different
optimizers and activation functions for each neural network,
whereas, in the second round, the user varies the number
of neurons and intermediate layers. The idea is that at the
end of each round, the user fine-tunes the hyperparameters
to improve the performance of the model evaluation metric
R2 and the loss function. During each round, the user queries
the provenance database to assess the performance of each
configuration. They can aggregate data that complement visual
analyses and yet are not trivial to be examined in typical
graphical tools like TensorBoard. The following queries show
a few examples.

Q1: What are the configurations for the trained PINNs?
Q2: What are the largest values of R2, and what is the epoch

and time taken to obtain them?
Q3: What are the lowest values of the loss function and its

components, what is the epoch and time it took?

Q1 shows some of the hyperparameters that are being used
in the two networks to train the PINN for each configuration.
Q2 and Q3 assist the user in identifying the highest R2 and
lowest loss values, respectively, obtained during the training,
as well as the time taken to reach these values. These queries
can help to analyze the trade-off between training time and
performance of the configurations, so they can drop or adjust
the configurations for the next round, or even abort the exe-
cution since the queries can be submitted during the training.

C. Monitoring PINN Eikonal with provenance

By analyzing the first round results presented in Tables I,
II, III, along with Figures 3 and 4, the user can gain a few
insights. For instance, Q2 highlights that configuration 3 took
almost as much time as configuration 5 but produced a much
lower R2. This may indicate that Adam with Sigmoid could
be discarded in future rounds. Q3 shows details of the PINN
loss, which is the main metric for inverse problems.
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TABLE I: Q1 results with the configurations for the training

ID Optimizer Activation
TT

Activation
Vel

Neurons
TT

Neurons
Vel

Intermediate
Layers TT

Intermediate
Layers Vel

1 Adam tanh tanh 20 32 8 4
2 Adam relu relu 20 32 8 4
3 Adam sigmoid sigmoid 20 32 8 4
4 Adam relu tanh 20 32 8 4
5 RMSProp tanh tanh 20 32 8 4

TABLE II: Q2 results ordered by the largest values of R2 with
its epoch and time taken to obtain them

ID Max R2 Epoch Time (m)
5 0.470 398600 100.912
1 0.377 88000 22.293
3 0.105 397200 100.756
2 0.093 86300 20.165
4 0.077 3400 0.790

TABLE III: Q3 results ordered by the lowest values of the loss
function and its components, with its epoch and time taken

ID L LR LBC LD Epoch Time (m)
5 4.503 · 10−5 3.727 · 10−5 4.066 · 10−10 3.102 · 10−7 399900 101.241
1 1.283 · 10−4 3.692 · 10−5 3.771 · 10−8 3.654 · 10−6 398100 100.852
4 2.229 · 10−4 1.252 · 10−4 7.298 · 10−9 3.910 · 10−6 359500 83.584
2 3.290 · 10−4 1.677 · 10−4 1.527 · 10−9 6.449 · 10−6 364000 85.055
3 3.636 · 10−3 5.861 · 10−4 2.212 · 10−8 1.220 · 10−4 343700 87.185

Fig. 4: Loss function value for all epochs (Upper); Focus on
the last 100,000 epochs (Lower). Regarding the first round.

In the second round, the user maintains the hyperparameters
related to configurations 1 and 5, but changes the topology of
the TT and Vel networks, doubling the number of intermediate
layers and adjusting the neurons for each one of them.

When analyzing Tables IV and V, with Figures 5 and 6,
the user can assess that, overall, changing the number of
intermediate layers and neurons did not improve the results
of the previous round. Although configuration 8 presented an
R2 of 0.380, which is greater than the R2 of configuration
1, configuration 8 took a considerably longer time (≈ 74
minutes). On the other hand, the loss function achieved lower
values (Table VI). Based on these analyses, one can also notice
that as the complexity of the PINN increases, the loss function
tends to be smaller. However, this reduction does not follow
the improvement in the predictive capacity of the model given
by the metric R2, indicating the need for new configurations.

Fig. 3: Metric value R2 for all epochs (upper); Focus on the
last 100,000 epochs (lower). Regarding the first round.

TABLE IV: Q1 results with configurations of the second round

ID Optimizer Activation
TT

Activation
Vel

Neurons
TT

Neurons
Vel

Intermediate
Layers TT

Intermediate
Layers Vel

6 Adam tanh tanh 40 64 16 8
7 RMSProp tanh tanh 40 64 16 8
8 Adam tanh tanh 20 32 16 8
9 RMSProp tanh tanh 20 32 16 8

TABLE V: Q2 results ordered by the largest values of R2,
with its epoch and time in the second round

ID Max R2 Epoch Time (m)
8 0.380 399800 174.046
6 0.219 8200 3.664
7 0.204 37400 17.011
9 0.194 124100 54.914

Fig. 5: Metric value R2 for all epochs (upper); Focus on the
last 100,000 epochs (lower). Regarding the second round.

TABLE VI: Q3 results ordered by the lowest values of the loss
with its components, its epoch and time in the second round

ID L LR LBC LD Epoch Time (m)
6 2.919 · 10−6 2.866 · 10−6 1.182 · 10−10 2.130 · 10−9 399700 78.599
7 6.568 · 10−6 5.213 · 10−6 3.841 · 10−10 5.419 · 10−8 395100 79.705
8 7.503 · 10−6 6.897 · 10−6 4.287 · 10−9 2.408 · 10−8 392100 70.694
9 3.415 · 10−5 2.719 · 10−5 4.834 · 10−10 2.783 · 10−7 397200 75.761

The user can continue to fine-tune the hyperparameters to
search for better PINN models. The provenance database can
be used to query data combined from the two rounds of PINN
configurations. By submitting query Q3 to configurations 1 to
9, the user identifies that the best model was configuration 5
with the lowest loss value for all its components, despite the
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Fig. 6: Loss function value for all epochs (Upper); Focus on
the last 100,000 epochs (Lower). Regarding the second round.

metric R2 = 0.47. This result is similar to the value obtained
in [12], which was validated with the best numerical method.
Figure 7b shows how the prediction made by the PINN model
generated with configuration 5 approaches the real solution to
the problem (Figure 7a).

(a) Ground truth (b) PINN model

Fig. 7: Comparison of prediction. (a) The ground truth velocity
model corresponds to a background velocity model with
vtrue(x) = 2.0[km/s] with two inclusions with vtrue(x) =
4.0[km/s] (top-left) and vtrue(x) = 1.5[km/s] (bottom-right)
[12]. (b) Prediction of the best PINN model with R2 = 0.47.

If the user seeks to go deeper in evaluating configuration
5, specific queries like in Table VII can be formulated, for
example, to check the behavior of learning rate adaptations at
specific epochs. This query seeks to find relations between
the values for the loss components and the learning rates.
Similarly, the user can keep track of automatic weight adap-
tations for the components of the loss function. These weight
values can be set to be captured using PINNProv so that they
are persisted in the provenance database, as is done with the
adaptation of the learning rate. Then, the user can also query
these weight evolutions.

TABLE VII: Query results for the learning rate adaptation
values at epoch 300000 and the next, with their metrics for
configuration 5

Epoch R2 L LR LBC LD
Learning

Rate
300000 0.451 9.787 · 10−5 5.215 · 10−5 3.867 · 10−9 1.829 · 10−6 7.397 · 10−4

300100 0.452 1.372 · 10−4 5.300 · 10−5 5.461 · 10−9 3.369 · 10−6 7.390 · 10−4

If the user did not use the support of PINNProv, they
would have to perform the management and collection of data
referring to the evaluation metrics and hyperparameters of each
model using log files, which would not provide the benefits
of persistence of data made from PINNProv. They would also
have to define an organization to store these files, which in
turn would not respect a predefined standard. In addition, they
would have to write another script to associate the different
log files referring to each model in order to carry out their
analyses.

D. Experiments with PINNProv and DeepXDE

We used PINNProv to capture provenance data using one of
the examples provided by DeepXDE, the inverse problem for
the Poisson equation with unknown force field4. This type of
equation is often found in Physics and engineering problems.
The equation is in one dimension and is of the form shown
in Equation 3 and with the Dirichlet boundary conditions as
presented in Equation 4.

d2u(x)

dx2
= q(x), x ∈ [−1, 1] (3)

u(−1) = u(1) = 0 (4)

In this Poisson example u(x) and q(x) are unknown. To
solve the problem, the value of u(x) is set to 100 points. The
reference solution is u(x) = sin(πx), q(x) = −π2sin(πx).
Similarly to the Eikonal PINN, DeepXDE defines two net-
works for this Poisson example, one to train u(x) and the
other to train q(x). The loss function L was also defined with
three components related to LR as the PDE residual, LBC as
boundary and initial conditions, and LD the data assimilation.
PINNProv persists provenance data at every 10 epochs. We
show results for 50000 epochs. The L2 relative error is used
as an evaluation metric.

To conduct the comparative analysis of the Poisson PINN
models, we submitted queries to the PINNProv database,
similar to the ones defined in the Eikonal PINN. Table VIII
shows the results of query Q1 with some attributes for the three
configurations evaluated. We defined alternative combinations
for the three weights of the L components. The hyperparam-
eters referring to the neural network are the same for the two
networks responsible for the estimates of u(x) and q(x).

TABLE VIII: Q1 results with the training configurations

ID Optimizer Activation Neurons Intermediate
Layers

Learning
Rate

Loss weights
(wR,wBC ,wD)

1 Adam tanh 20 4 1 · 10−4 (10,100,1000)
2 Adam tanh 20 4 1 · 10−4 (15,150,1500)
3 Adam tanh 20 4 1 · 10−4 (20,200,2000)

It is worth noticing that this is a simple PINN training
execution, and the elapsed time for each configuration in the
50,000 epochs was a maximum of 90 seconds. Queries Q2
and Q3 provide an analysis of the best L2 relative error metric
and the lowest value of the loss function for the three model

4https://deepxde.readthedocs.io/en/latest/demos/pinn inverse.html
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configurations. Table IX may indicate that configuration 3
has an advantage over the others given the relative L2 error.
These aggregated max and min query results complement the
evolutions shown in graphical figures. In Figure 8 we can see
that configurations 1 and 3 converged to the L2 relative error
early in training, before epoch 5,000, and did not improve
significantly after that. The behavior of the loss function during
training, as depicted in Figure 9, shows improvements over the
epochs, however, this improvement is not accompanied by a
substantial evolution in the L2 metric. Taking into account
the relative error L2, we can see that the best-trained model is
given by configuration 3. The estimate of this model compared
to the ground truth is in Figure 10.

TABLE IX: Q2 results ordered by the lowest relative error
values L2 for the function u(x), with its epoch and time taken

ID Minimum L2
relative error Epoch Time (s)

3 1.98·10−4 49590 83.064
2 2.89·10−4 49990 83.778
1 2.97·10−4 49860 88.809

Fig. 8: Relative error value L2 for function estimates u(x) for
all epochs (upper); Focus on the last 5,000 epochs (lower).

TABLE X: Q3 results ordered by the lowest values of the loss
with its components, its epoch and time taken

ID L LR LBC LD Epoch Time(s)
1 5.384·10−5 9.980·10−7 1.975·109 4.366·10−8 49860 88.809
3 6.359·10−5 1.017·10−6 2.037·108 1.959·10−8 49830 83.466
2 6.751·10−5 1.666·10−7 1.166·108 4.218·10−8 49990 83.778

Fig. 9: Loss function value for all epochs (Upper); Focus on
the last 5,000 epochs (Lower).

Fig. 10: Comparison between the ground truth given by the
real function u(x) and our best PINN.

Despite being a simple example, it shows the advantages
of persisting provenance data with PINNProv in DeepXDE.
Once the callback object is defined, PINNProv can be used
to capture provenance in other PINN trainings for solving
different problems with DeepXDE, and all databases follow
the same representation, unlike when using Pandas or CSV.

V. RELATED WORK

Despite the provenance support of many ML frameworks,
a recent survey [24] highlights the need to use standard rep-
resentations and support for provenance queries, which most
frameworks do not provide. We performed a literature search
to find provenance solutions developed to capture provenance
data specifically for PINNs but found no results. There are
provenance systems that aim at scientific ML workflows,
which support ML provenance capture in HPC and address
scientific data representation [11], [20], [25] , but still lack
tracking the loss function components evolution, etc.

Braid-DB [25] aims at capturing metadata and provenance
records for reproducibility, evolution, and explainability of
scientific ML. Braid-DB is part of an exascale project aiming
at continuum executions. Braid-DB represents provenance
relationships between activities and entities but does mention
the use of W3C PROV or how its provenance model could be
extended for PINNs.

Provenance systems like PROV-IO [26], ProvLake [20],
[27], [28] and DNNProv [11] have shown their abilities in
providing W3C PROV-compliant provenance data for scientific
ML workflows in HPC environments. ProvLake and DNNProv
specialize their PROV-DM schema to represent typical ML
artifacts, helping the specification of provenance capture in
ML scripts. This specialization schema can be further explored
by the user for PINNs. However, we consider it to be a lot of
burden and complexity for the PINN user who would have to
go deep into PROV-DM concepts and relationships to model,
then instrument, and query PINN data.

VI. CONCLUSION

The provenance data of a deep learning experiment con-
tributes to model evaluation, reproducibility, and explain-
ability. There are challenges in provenance data capture in
distributed and HPC environments and in defining what data
should be captured for analytical queries. Having a W3C
PROV-compliant representation provides a uniform way of
querying relationships between datasets, training activities,
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parameters, and agents. It also helps to share and interpret
PROV documents associated with models. Training PINN
models is more complex due to the representation of the
Physics and complexity of the neural networks, which add
more challenges to provenance capture. PINNProv contributes
by providing a set of services to be invoked in PINN scripts.
The basic data to be captured are predefined to familiarize the
user with provenance queries. Then, more data can extend the
provenance database. Different frameworks for PINN scripts
can provide provenance using PINNProv in callback class
objects and other specializations. Experiments with PINNProv,
in a supercomputer, show how the PINN provenance database
complements graphic chart evaluations. Database queries show
aggregated values ordered by the lowest errors and highest
metrics from separate executions of different rounds of iter-
ations of model configurations. These databases can be used
in future configurations of new PINNs or adjustments. When
a trained model is selected for production, it can carry its
own representation of provenance in PROV documents to add
quality and trust to the model put into production.
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