
Dynasor: A Dynamic Memory Layout for
Accelerating Sparse MTTKRP for Tensor

Decomposition on Multi-core CPU

Sasindu Wijeratne∗, Rajgopal Kannan†, Viktor Prasanna∗
∗ University of Southern California, Los Angeles, USA

† DEVCOM Army Research Lab, Los Angeles, USA

Email: {kangaram, prasanna}@usc.edu, rajgopal.kannan.civ@army.mil

Abstract—Sparse Matricized Tensor Times Khatri-Rao Prod-
uct (spMTTKRP) is the most time-consuming compute kernel
in sparse tensor decomposition. In this paper, we introduce a
novel algorithm to minimize the execution time of spMTTKRP
across all modes of an input tensor on multi-core CPU plat-
form. The proposed algorithm leverages the FLYCOO tensor
format to exploit data locality in external memory accesses. It
effectively utilizes computational resources by enabling lock-free
concurrent processing of independent partitions of the input
tensor. The proposed partitioning ensures load balancing among
CPU threads. Our dynamic tensor remapping technique leads
to reduced communication overhead along all the modes. On
widely used real-world tensors, our work achieves 2.12× - 9.01×
speedup in total execution time across all modes compared with
the state-of-the-art CPU implementations.

Index Terms—Tensor Decomposition, spMTTKRP, CPU
I. INTRODUCTION

Tensor Decomposition (TD) enables the transformation

of high-dimensional tensors into a lower-dimensional latent

space, facilitating the identification of important features in

the data distribution. TD finds applications in various fields

such as machine learning [1], [2], [3], signal processing [4],

and network analysis [5]. Canonical Polyadic Decomposition

(CPD) via alternating least squares (CP-ALS) is a widely

used TD algorithm where Matricized Tensor Times Khatri-Rao

Product (MTTKRP) is the most time-consuming computation.

Numerous tensor formats have been proposed in the lit-

erature to tackle the challenges posed by sparse tensors

encountered in real-world scenarios [6], [7], [8], [9], [10],

[11]. These formats employ multiple tensor copies (i.e., mode-

specific tensor formats) or additional memory to store interme-

diate results of computations to support irregular data access

patterns in each tensor mode. However, these approaches have

the drawback of increasing the overall memory requirements

of the algorithm. Notably, mode-specific tensor formats ne-

cessitate several replicas of the original tensor, each arranged

based on different permutations of nonzero tensor elements.

This replication grows linearly with the number of modes,

rendering it impractical as the number of modes increases.

Additionally, relying on memory to store intermediate values

poses scalability challenges, limiting its usefulness to small

datasets. Furthermore, as the size of the tensor grows, there

is a potential for memory explosion, further exacerbating the

scalability issue.

One desirable solution to reduce memory traffic is to

reduce the number of accesses to the data by increasing their

reusability. Tensor formats such as HiCOO [8] and ALTO [7],

which use variations of Morton ordering [8] to bring the

tensor elements with neighboring coordinates closer, exhibit

an increase of data reusability. However, these tensor formats

still generate a significant number of intermediate values that

usually lead to increased memory access time and storage

requirements.
Wijeratne et al. [6] introduced FLYCOO, a novel tensor for-

mat aimed at accelerating spMTTKRP on Field Programmable

Gate Arrays (FPGAs). FLYCOO enhances data locality across

all tensor modes while accessing the input tensor and the factor

matrices in the FPGA external memory.
We employ a dynamic memory layout to achieve load

balancing and communication efficiency, enabling a straight-

forward static schedule for computing spMTTKRP in each

mode. This dynamic approach significantly reduces the gener-

ation of intermediate values during computation, which would

otherwise need to be communicated to the CPU external

memory. To facilitate the memory layout, we propose a parallel

algorithm, Dynasor, which performs elementwise computa-

tions and dynamic tensor remapping.
The key contributions of this work are:

● We adapt the FLYCOO data format to support spMT-

TKRP computation on multi-core CPUs by introducing,

Dynasor: a parallel algorithm for spMTTKRP with dy-

namic tensor remapping. We implement Dynasor using

C++ and openMP directives.

● Dynamic memory layout: By dynamically remapping

the input tensor between successive executions of spMT-

TKRP, we increase the data locality of external memory

accesses while avoiding the intermediate value commu-

nication to the external memory. Our empirical results

demonstrate that our approach can perform under a

memory-constrained environment with minimum exter-

nal memory during runtime compared to state-of-the-art

implementations when applied to large tensors.

● Scheduling and Load balancing: Our proposed Super-

shard-based load balancing technique enables lock-free

spMTTKRP computation. Compared to the single-thread

implementation, the paper introduces a static scheduling

scheme that achieves a speedup of 8.5× to 21× on 56

CPU threads.

● On widely used real-world tensors, our work achieves

2.12× - 9.01× speedup in total execution time across all

modes compared to the state-of-the-art CPU implemen-

tations.

II. BACKGROUND AND RELATED WORK

A. Notations

Table I summarizes the notations used in this paper.

TABLE I: Notations
Symbol Details
X sparse tensor
X(n) mode-n matricization of X

M matrix
v vector
a scalar
○ vector outer product
⊗ Kronecker product
⊙ Khatri-Rao product

B. Tensor Decomposition

A tensor is a generalization of an array in multiple di-

mensions. In TD, the number of dimensions of an input

tensor is commonly called the number of tensor modes. A

N -mode, real-valued tensor is denoted by X ∈ RI0×⋯×IN−1 .

Further, X(n) denotes the mode-n matricization or matrix

unfolding [12] of X . X(n) is defined as the matrix X(n) ∈
R

In×(I0⋯In−1In+1⋯IN−1) where the parenthetical ordering indi-

cates, the mode-n column vectors are arranged by sweeping

all the other mode indices through their ranges.

Canonical Polyadic Decomposition (CPD) decomposes X
into a sum of single-mode tensors (i.e., arrays), which best

approximates X . For example, given 3-mode tensor X ∈
R

I0×I1×I2 , our goal is to approximate the original tensor as

X ≈ R−1∑
r=0

ar ○ br ○ cr (1)

where R is a positive integer and ar ∈ RI0 , br ∈ RI1 , and

cr ∈ RI2 . For a thorough review of CPD, refer to [13].

In the rest of Section II, we assume that the number of

modes is three for illustration purposes.
Algorithm 1: CP-ALS for 3-mode tensors

1 Input: A tensor X ∈ RI0×I1×I2 , the rank R ∈ Z+
2 Output: CP decomposition [[A,B,C]], A ∈ RI0×R,

B ∈ RI1×R, C ∈ RI2×R

3 while stopping criterion not met do
4 // Matricization of X is different for each factor

matrix computation

5 A← spMTTKRP(X(0),B,C)
6 B← spMTTKRP(X(1),A,C)
7 C← spMTTKRP(X(2),A,B)
8 Normalize A, B, C

The alternating least squares (ALS) method is used to com-

pute CPD. Algorithm 1 shows the ALS method for CPD (i.e.,

CP-ALS) where Matricized Tensor-Times Khatri-Rao product

(MTTKRP) is iteratively performed on all the Matricizations

of X , iteratively. In this paper, performing MTTKRP on all

the Matricizations of an input tensor is called computing

MTTKRP along all the modes. The outputs A, B, and C
are the factor matrices that approximate X . ar, br, and cr
in Equation 1 refers to the rth column of A, B, and C,

respectively.

In this paper, we focus on MTTKRP on sparse tensors

(spMTTKRP), which means the tensor is sparse, and the factor

matrices are dense.

C. Elementwise computation of spMTTKRP

The objective of this paper is to reduce the total execution

time of spMTTKRP along all the modes of the tensor. The

efficient execution of elementwise computation of spMTTKRP

in all the tensor modes is the key to reducing the total

execution time.

Figure 1 summarizes the elementwise computation of a

nonzero tensor element in mode 0 of a 3-mode tensor. Here,

we use the same notations as Algorithm 1.

Fig. 1: Elementwise computation of

spMTTKRP

In Figure 1,

the elementwise

computation is carried

out on a nonzero tensor

element, denoted asX(0)(i, j, k). In sparse

tensors, X(0)(i, j, k) is

typically represented

in formats such as

COOrdinate (COO)

or Compressed Sparse

Fiber (CSF). These formats store the indices (i, j, and k) or

pointers to these indices along with the element value (i.e.,

val(X(0)(i, j, k))).
To perform the computation, X(0)(i, j, k) is first loaded onto

the Compute device from the external memory (step 1). The

Compute device retrieves the rows A(i, ∶), B(j, ∶), and C(k, ∶) from the factor matrices using the index values extracted

from X(0)(i, j, k) (step 2 , step 3 , and step 4). Then the

Compute device performs the following computation:

A(i, r) =A(i, r) + val(X(0)(i, j, k)) ⋅B(j, r) ⋅C(k, r)
Here, r refers to the column index of a factor matrix row

(r < R). The operation involves performing a Hadamard

product between row B(j, ∶) and row C(j, ∶) (step 5), and

then multiplying each element of the resulting product by

val(X(0)(i, j, k)) (step 6). After updating A(i, ∶) (step 7),

the updated value is stored back in the external memory (step

8).

D. Related Work

Wijeratne et al. [6] develop a customized accelerator on

Field Programmable Gate Array (FPGA) for performing

spMTTKRP on sparse tensors along with a specific tensor

format labeled FLYCOO that supports the FPGA optimiza-

tions. In this paper, we focus on optimizing spMTTKRP for

multi-core CPUs, which pose substantially different challenges

from FPGAs, and adapt the FLYCOO format to support our

multi-core CPU optimizations.

Helal et al. [7] propose ALTO, a tensor ordering method

based on space-filling curves designed to effectively encode

irregularly shaped spaces. ALTO requires minimum external

memory to store tensors. However, this tensor format entails

storing a large number of intermediate values generated during

the computation in external memory during runtime, increas-

ing memory access time. In contrast to ALTO, we use a

dynamic memory layout to mitigate the communication time

between the CPU and external memory.

J. Li et al. [8] propose HiCOO, a block-based format that

utilizes compression techniques to handle sparse tensors by

leveraging the Z-Morton curve [14] for efficient storage and

retrieval. However, HiCOO encounters workload imbalance

issues among blocks due to the irregular spatial distribution of

sparse data. Despite both FLYCOO and HiCOO [8] employing

similar tensor ordering strategies (i.e., Z-Morton ordering) dur-

ing format generation, they demonstrate notable distinctions

in terms of reduced intermediate value communication, tensor

partitioning scheme, and distribution of nonzero elements. An

in-depth comparison can be found in [6].

Kurt et al. [15] propose the STeF format to explore the

impact of saving partial spMTTKRP results and reusing them

during the spMTTKRP computation along all the tensor

modes. They present a load-balancing approach at a fine-

grained level to enable higher levels of parallelization. In con-

trast, our work employs a dynamic tensor remapping technique

to optimize data locality during elementwise computation.

Our proposed parallel algorithm also eliminates the need

for additional storage to store partial spMTTKRP results, as

required in the algorithm suggested by Kurt et al. [15].

III. FLYCOO TENSOR FORMAT

The FLYCOO tensor format is introduced in [6] to perform

spMTTKRP for tensor decomposition on FPGAs. Our work

adapts the FLYCOO format to accelerate spMTTKRP on

multi-core CPU. Section III-A provides a brief overview of

the FLYCOO format. More details on FLYCOO format can

be found in [6].

In tensor decomposition, spMTTKRP is computed along

each mode sequentially as described in Section II-B. When

computing spMTTKRP for mode n of the input tensor, mode

n is referred to as the output mode and its corresponding factor

matrix as the output factor matrix. Meanwhile, the rest of

the modes are called input modes, and their factor matrices

become input factor matrices.

The FLYCOO format assigns each nonzero tensor element

to a tensor partition for each mode and embeds partition IDs

to each tensor element. The tensor is divided into multiple

partitions, called super-shards with an equal number of output

mode indices.

A. FLYCOO Tensor Format

For each output mode n (0 ≤ n < N), consider mn rows

of the output factor matrix. Here, we are considering an input

tensor with N -modes. Let In denote the indices in mode n.

FLYCOO reorganizes the data in the following manner: First,

the indices of mode n are partitioned into kn = ∣In∣mn
equal-sized

sets In,0, In,1, . . . , In,kn−1 , where∣In∣ is the number of indices

in mode n. Next, the nonzero tensor elements incident on

In,j are collected into a super-shard SSn,j . Finally, to support

dynamic tensor remapping, each super-shard is further divided

into equal-sized sets of size g called shards, where g is a tensor

partitioning parameter that is tuned depending on the cache

size of the CPU platform (see Section III-C). The qth such

shard is denoted as shardn,j,q and the total number of shards

for mode n is equal to ∑kn−1
j=0 ⌈∣SSn,j ∣/g⌉.

FLYCOO maps each nonzero tensor element to a shard in

each mode. A tensor of size ∣T ∣ with N modes in the FLYCOO

format is a sequence x0, . . . , x∣T ∣−1, where each element xi is

a tuple ⟨si, pi, vali⟩, si = (b0, . . . , bN−1) is a shard ID vector

where each shard ID corresponds to a mode of the tensor.

Here, bn = (j, q) if and only if xi ∈ shardn,j,q . This is used to

locate the shards where each nonzero tensor element belongs

in each mode. pi = (c0, . . . , cN−1) is the original indices of the

nonzero tensor element in each dimension. vali is the value

of the nonzero tensor elements of the tensor at pi. Following

the notation used in Section III-B, a single nonzero element in

the FLYCOO format requires approximately N × log2 (∣T ∣g) +∑N−1
h=0 log2 ∣Ih∣ + βfloat bits, where βfloat is the number of bits

needed to store the floating-point value of the nonzero tensor

element. Here, ∣si∣ ≈ N × log2 (∣T ∣g), ∣pi∣ = ∑N−1
h=0 log2 ∣Ih∣, and

∣vali∣ = βfloat.

B. Dynamic Tensor Remapping

During preprocessing, for each mode, nonzero elements of

the tensor are assigned to a shard following Section III-A.

When performing spMTTKRP mode by mode, the tensor

elements are dynamically remapped based on the shard IDs

associated with the mode to be executed next. Initially, the

tensor is ordered according to the shard IDs of mode 0.

During the spMTTKRP computation for mode 0, the tensor

is reordered based on the shard IDs of mode 1. Therefore,

by the time the computation for mode 1 begins, the tensor is

already ordered according to mode 1. This reordering holds

true for any mode during the computation process. As proven

in [6], the dynamic tensor remapping requires 2× ∣T ∣ external

memory. This eliminates the need to create additional tensor

copies equal to the number of tensor modes, which was

previously necessary to facilitate mode-specific optimizations.

C. FLYCOO for multi-core CPU

We adapt the FLYCOO tensor format without modifying the

format. We introduce several key contributions. (1) We propose

Dynasor, a novel thread-level parallel algorithm that supports

multi-core CPU-based spMTTKRP. This algorithm leverages

super-shard-wise partition distribution among threads, ensur-

ing load balancing across the workload. (2) We demonstrate

that dynamic tensor remapping can be efficiently performed on

a CPU-based hierarchical cache memory system, eliminating

the need for a specialized memory system as proposed in [6].

(3) We enable elementwise computation with dynamic tensor

remapping in a single thread, with maximum parallelization

possible on a CPU. (4) We show that FLYCOO can be adapted

to general CPU platforms without specific hardware, like

custom memory controllers.

In our work, we optimize the tensor partitioning parameters

of the FLYCOO format for a given CPU platform. Consider a

multi-core CPU with ν threads and a total cache size of Γ: Our

goal is to select the tensor partitioning parameters of FLYCOO

to (1) utilize all the threads optimally while executing Dynasor

and (2) optimally share the cache among inputs and outputs

of Dynasor. It can be achieved by satisfying the constraints

shown in Equations 2 and 3. Equations 2 and 3 follow the

same notations as Section III-A.

∀n; ∣In∣
mn
= q × ν; q ∈ Z+ (2)

∀n; Γ = θ × ((α ×mn ×R + β × g) × ν + σ × kn−1∑
j=0

⌈ ∣SSn,j ∣
g
⌉

0 < θ < 1
(3)

The objective is to determine the optimal values for the

variables g and mn for each mode n to efficiently utilize CPU

threads and the CPU cache. All of these variables have inter-

dependencies. For example, if mn of mode n is too small, we

are not able to choose larger g values for very sparse tensors

as the number of nonzero tensor elements of super-shards of

mode n can be significantly small.

Equation 2 ensures that the number of super-shards is

sufficiently large enough to be distributed among the available

CPU threads for all the modes (∀n). Equation 3 describes

sharing the cache among different inputs to the proposed

algorithm, Dynasor. (α×mn+β×g)×ν guarantees the intervals

that correspond to the super-shards currently being executed on

the CPU threads at a given time and the input tensor elements

correspond to the super-shards executing on the CPU threads

fit inside the total CPU cache. Meanwhile, σ ×∑kn−1
j=0 ⌈ ∣SSn,j ∣

g
⌉

make sure the memory address pointers in dynamic tensor

remapping fit inside the total CPU cache. Here, α, β, and

σ represent the size of a factor matrix row, nonzero tensor

element, and address pointer for dynamic tensor remapping,

respectively. We introduce θ (< 1) to share the cache with input

factor matrices. In our experiments, we set θ = 0.5. Finally,

we select a set of tensor partitioning parameters for a given

input tensor that satisfies these requirements.

IV. PARALLEL ALGORITHM

In Algorithm 2, tensor ordered according to mode 0 shards

(H0), factor matrices (Y = {Y0, Y1, ..., YN−1}), and super-shard

to CPU thread map (SS List) are used as the inputs. The

preprocessing involves converting the input tensor to FLYCOO

format, during which the super-shard-to-shard mapping for

each mode is generated as metadata. This mapping is es-

sentially a dictionary that indicates which shard belongs to

which super-shard. SS List is used as a static scheduling

Algorithm 2: Dynasor: Algorithm for spMTTKRP

with Dynamic Tensor Remapping on multi-core CPU

1 Input: Input tensor ordered according to mode 0

shards, H0 = {S0,j ∶ ∀j}
2 Super-shard to CPU thread map, {SS Listn ∶ ∀n}
3 Randomly initialized factor matrices

Y = {Y0, Y1, ..., YN−1}
4 Output: Updated factor matrices-set

Ŷ = {Ŷ0, Ŷ1, ..., ŶN−1}
5 for each mode n = 0, . . . ,N − 1 do
6 Initialize Ŷn as a zero matrix

7 for each S Mapn,j in SS Listn parallel do
8 if threadj is idle then
9 // len(SS Listn) ≤ number of threads

10 for each S pointer ∈ S Mapn,j do
11 S ← Load(S pointer)

12 for each element, xi = ⟨si, pi, vali⟩ ∈ S
do
// -MTTKRP Computation-

13

14 value← vali
15 pi = (c0, . . . , cN−1)
16 shard ids, si = (b0, . . . , bN−1)

17 z ← by
18 // � is a vector of size R
19 �← {1}
20 for input mode

w ∈ {0, . . . ,N − 1} ∖ {n} do
21 vec← Load(row cw from wth

factor matrix)

22 for each rank r in R parallel do
23 �(r) ← �(r) × vec(r)
24 for each rank r in R parallel do
25 Ŷn(cn, r) ←

Ŷn(cn, r) + value × �(r)
// -Dynamic Tensor

Remapping-
26

27 Store(xi at shardb(n+1)modN
)

policy of the super-shards among the available threads. More

comprehensive details regarding the scheduling process can be

found in Section IV-A.

In Algorithm 2, a CPU with ν threads can simultaneously

process ν super-shards. All threads are synchronized after each

mode. Once a super-shard is allocated to a CPU thread, each

thread undertakes two distinct operations on every nonzero

tensor element within the super-shard. These operations con-

sist of the following: (1) elementwise spMTTKRP computa-

tion (see Section II-C), and (2) dynamic tensor remapping.

Using SS List, each thread sequentially loads the shards

of the assigned super-shards into the CPU cache (Algorithm 2,

line 11). Firstly, the index values of all the modes are extracted

from the tensor element (Algorithm 2, line 15). Next, the corre-

sponding rows of the input factor matrices are loaded from the

external memory (Algorithm 2, lines 20-21). Subsequently, the

current CPU thread performs elementwise operations between

the tensor element and each element of the rows of the input

factor matrices (Algorithm 2, lines 22-25). The elementwise

computation can be summarized as Equation 4. Equation 4

uses the same notation as the Algorithm 2. Here, elementwise

computation is performed for the rth column element of cthn
row of Yn factor matrix.

Ŷn,cn,r = Ŷn,cn,r + value ×
N−1∏

w=0;w≠n

Ŷw,cw,r; 0 ≤ r < R (4)

After computing spMTTKRP for mode n, the CPU executes

spMTTKRP for the subsequent mode, which is given by(n + 1) mod N . To support the proposed parallel algorithm,

nonzero tensor elements in the input tensor must be ordered

according to the output mode shard ids. Therefore, the tensor

is remapped based on the shard IDs of mode (n+1) mod N
to compute the spMTTKRP for the upcoming mode. As a

result, while the current mode is being executed, the tensor

is remapped in parallel according to the shard IDs of the

upcoming mode, facilitating the sequential execution of all

the modes (Algorithm 2, line 27). The algorithm maintains a

record of the locations that need to be filled for each shard

of the upcoming mode, determining the memory location

to be filled in each shard and allowing for dynamic tensor

remapping.
By following this process, the algorithm leverages the

parallelism offered by the multiple threads to process multiple

super-shards concurrently while ensuring synchronization and

orderly execution of the required operations.
Initially, the input tensor is arranged in the CPU external

memory based on the shard IDs of mode 0, denoted asH0 = {SS0,j ∶ ∀j}. Meta-data is used as inputs to establish

the mapping between threads and shards, enabling efficient

computation scheduling across multiple threads. This mapping

is represented as SS Listn,j ∶ ∀n, j. It is worth noting that

both SS Listn and S Mapn,j (Algorithm 2, line 2 and line

10) are arrays are pointers that reference to tensor partitions.
Algorithm 2 is designed for a multi-thread CPU, where

each thread can independently perform the elementwise com-

putations on each assigned super-shard without interfering

with the other threads (i.e., lock-free computation). Lock-free

computation is enabled by collecting all the nonzero tensor

elements of an output mode index to the same super-shard. It

ensures that all the elementwise computations used to update

a row of an output factor matrix are executed on the same

CPU thread.
A. Super-shard Scheduling Scheme

We propose static super-shard scheduling to ensure balanced

workload distribution among the CPU threads. During the

preprocessing time, we map each super-shard and its shards

to a CPU thread and generate SS List. SS List is a 2-

dimensional list that indicates the super-shards assigned to

each CPU thread in each mode. We employ Algorithm 3,

a greedy algorithm to distribute the super-shards among the

CPU threads, which achieves balanced workload distribution

for each mode. By distributing the super-shards appropriately,

the proposed method aims to optimize the utilization of

CPU resources and achieve efficient parallel execution of the

spMTTKRP computation for each mode.

Algorithm 3: Super-shard scheduling among threads

1 Input: A sorted list of super-shards, SS depending on

the number of shards in the super-shard. Here, SSn,j

indicates the jth super-shard in mode n. ∣SSn,j ∣
indicates the number of shards belongs to the

super-shard SSn,j

2 SS List with N × ν empty bins. Here, SS Listn,j
indicates the jth bin of mode n. jth bin correspond

to the jth CPU thread

3 Output: SS List, where each super-shards, SS
mapped to a bin inside SS List

4 for each mode n = 0, . . . ,N − 1 do
5 for each super-shard id j = 0, . . . , kn−1 do
6 // identify the least filled bin in mode n ofSS List
7 ind = Index(min(∣SS Listn,i∣)); ∀i
8 SS Listn,ind.append(SSn,j)
9 return SS List

In this context, the total number of computations associated

with a super-shard is directly proportional to the number of

nonzero tensor elements it contains. Since each super-shard

is partitioned into shards with an equal number of tensor

elements, the total number of computations is also proportional

to the number of shards within a super-shard. It is worth noting

that the number of shards in a super-shard can vary based on

the sparsity of the tensor.

Suppose a tensor of size T is partitioned into super-shards{SSn,j ∶ ∀ j} for a mode n. Let ∣SSn,j ∣ be the number of

shards in the super-shard SSn,j . We reorder the indices of

super-shards such that ∣SSn,j ∣ ≥ ∣SSn,j′ ∣ if j < j′ so that they

are sorted in descending order of the number of shards. We

use the sorted list SS as the input to the Algorithm 3. Each

super-shard (SSn,j) is iteratively assigned to the CPU thread

currently the least heavily loaded (i.e., with the least number

of shards assigned). We perform the above operation for all the

tensor modes as indicated in Algorithm 3. For a given output

mode, let ∣SS∣max be the largest number of shards assigned

to a single thread, and ∣SS∣∗max be the value of ∣SS∣max in

an optimal shard distribution among the threads. Then our

proposed greedy approach above guarantees that ∣SS∣max ≤
4/3 ⋅ ∣SS∣∗max [16].

B. Memory Requirements

In this Section, we use the same notations as Section III.

Dynasor requires 2×∣T ∣ to store the tensor, including the addi-

tional memory required to perform dynamic tensor remapping.

Dynasor also keeps the total elements of factor matrices equal

to ∣I∣ × R, where ∣I∣ = ∑N−1
n=0 ∣In∣. As the number of super-

shards is constructed to be the same as the number of intervals

(see Section III-A), the total number of super-shards equal to
∣In∣
mn

for mode n. Since SS Listn used for scheduling (see

Section IV-A) requires keeping pointers for each super-shard,

it requires ∑N−1
n=0

∣In∣
mn

pointers. Dynamic tensor remapping re-

quired pointers for each shard (Algorithm 2, line 27) resulting

in a total of ∑kn−1
j=0 ⌈∣SSn,j ∣/g⌉ shard pointers.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Platforms: We conduct detailed experiments on Intel

Xeon Gold 5120 CPU with Skylake microarchitecture. The

platform consists of two sockets, each CPU consisting of 14

physical cores (28 threads) running at a fixed frequency of

2.2 GHz, sharing 128 GB of CPU external memory. Utilizing

this platform, we systematically vary hardware parameters

such as the total CPU external memory and the number of

CPU threads. To quantify the improvements, we measure CPU

thread utilization and CPU external memory utilization.

We also demonstrate superior performance in total execution

time on AMD platforms. We use AMD Ryzen Threadripper

3990X CPU with Zen 2 microarchitecture. The platform

consists of two sockets, each CPU consisting of 32 physical

cores (64 threads) running at a fixed frequency of 2.2 GHz,

sharing 128 GB of CPU external memory.

Both systems run Ubuntu 18.04.5 LTS Linux distribution as

the Operating System.

2) Implementation: The code is built using g++ 7.5.0

C/C++ compiler (version 19.1.3) and OpenMP application

programming interface. The experiments use all hardware

threads on the target platforms unless otherwise stated.

We use the Linux perf [17] and Intel Advisor [18] for per-

formance counter measurements, thread pinning, and roofline

analysis on the Intel platform.

3) Datasets: Similar to state-of-the-art [6], [7], [8], we

use tensors from the Formidable Repository of Open Sparse

Tensors and Tools (FROSTT) dataset [19]. Table II shows a

summary of the characteristics of the tensors.

TABLE II: Characteristics of the sparse tensors
Tensor Shape #NNZs Density
Nell-1 2.9M × 2.1M × 25.5M 143.6M 9.1 × 10−13

Nell-2 12.1K × 9.2K × 28.8K 76.9M 2.4 × 10−05

Flickr 319.6K × 28.2M × 1.6M 112.9M 1.1 × 10−14

Delicious 532.9K × 17.3M × 2.5M × 1.4K 140.1M 4.3 × 10−15

Vast 165.4K × 11.4K × 2 × 100 × 89 26M 7.8 × 10−07

4) Baselines: We evaluate our approach against state-

of-the-art CPU-based work ALTO [7], HiCOO [8], and

STeF [15]. ALTO, HiCOO, and Dynasor (i.e., our work) are

executed on an identical CPU environment. Additionally, we

compare against the reported results of STeF in [15].

To obtain the best results with HiCOO, we follow the rec-

ommended configurations of the source code [20]. However,

the HiCOO code [20] only supports tensors with up to 4

modes. Therefore, we use a benchmarking tool [21] provided

by the authors of HiCOO [8] to estimate the execution time

for tensors with more than 4 modes. In our experiments, we

use open-source ALTO repository [22] compiled with GCC

and BLAS library [23].

5) Tensor Partitioning Parameters of FLYCOO: When ∣In∣
is less than ν, we set mn equal to 1. Conversely, when ∣In∣
is much larger than ν, we determine the value of q from

Equation 2, such that 1000 < mn < 16000 holds true for

both CPU platforms. Additionally, we ensure that the value

of g falls within the range of 1024 to 32768 while satisfying

Equation 3 for all datasets on both CPU platforms.

B. Implementing Dynamic Remapping

Fig. 2: Impact of performing dy-

namic tensor remapping and el-

ementwise spMTTKRP computa-

tion in the same CPU thread vs.

different CPU threads

In Algorithm 2, we

can perform the elemen-

twise computation and

dynamic tensor remap-

ping integrated into the

same thread or inde-

pendently in different

threads, overlapping the

execution of element-

wise computation and

dynamic tensor remap-

ping. Figure 2 illus-

trates the overall im-

provement in execution

time achieved by per-

forming both operations on the same thread compared to

running them on separate threads. Throughout the paper, we

use integrated remapping and elementwise computation as it

shows better speedups.

C. Overall Performance

Figure 3 compares the total execution time of ALTO,

HiCOO, and Dynasor for all the datasets on the Intel CPU.

The factor matrix rank (R) in the experiments varies from 16

to 256.

For Flickr and Nell-1, ALTO and HiCOO ran out-of-

memory while computing factor matrices for larger ranks

(e.g., R = 256) since the intermediate values generated during

the computation exceed the available CPU external memory

(128 GB). In contrast, Dynasor is able to compute the factor

matrices for all the ranks. Super-shards-wise computation in

Dynasor avoids such memory explosion as it allows interme-

diate values to be fit within the CPU cache during runtime.

Dynasor exhibits superior overall performance in total com-

putation time, except for a few specific cases. For example,

Dynasor partitions the indices in each mode equally among the

super-shards, which are then distributed across the CPU cores

for computation. In mode 3 of the Vast dataset, there are only

2 indices that limit the distribution of the workload across all

the threads. As a result, ALTO outperforms our approach in

mode 3 of the Vast dataset. In Nell-2, each mode contains only

thousands of indices (i.e., 12092, 9184, and 28818) which are

smaller than other large datasets with millions of indices per

(a) Nell-1 (b) Nell-2 (c) Flickr (d) Delicious (e) Vast

R = 16

R = 32

R = 64

R = 128

R = 256

Fig. 3: Total execution time on Intel platform

Fig. 4: Speedup of Dynasor against state-of-the-art baselines on AMD platform

TABLE III: Speedup of Dynasor over state-of-the-art

R = 16 R = 32 R = 64 R = 128 R = 256 Overall Speedup
Speedup over ALTO [7] on Intel platform 0.88 1.47 1.92 2.25+ 2.36+ 1.70+

Speedup over HiCOO [8] on Intel platform 9.02 9.19 11.51 14.34 37.55∗ 13.67∗
Speedup over ALTO [7] on AMD platform 3.75 4.11 5.53 2.95+ 3.21+ 3.22+

Speedup over HiCOO [8] on AMD platform 2.33 2.35 3.03 4.37 9.63∗ 4.34∗
Speedup over STeF [15] n/a 1.71 2.52 n/a n/a 2.12

Overall Speedup 4.00 3.77 4.91 5.98+ 13.19+∗ 6.37+∗

+: ALTO runs out of memory for some input tensors
∗: HiCOO runs out of memory for some input tensors

n/a: Not reported in [15]

Fig. 5: Speedup compared with STeF

mode. Consequently, all the factor matrices of Nell-2 fit inside

the CPU cache. Therefore, combining intermediate values in

Adaptive Linearized Order (in ALTO) becomes an inexpensive

operation compared to dynamic remapping use in Dynasor.

Therefore, ALTO outperforms Dynasor for Nell-2.

Fig. 6: Impact of proposed

scheduling strategy

To demonstrate platform

independence, we conducted

identical experiments on an

AMD Ryzen Threadripper

3990X CPU platform. As

shown in Figure 4, the total

execution time exhibits a

similar trend as the Intel

platform. The overall speedup

of Dynasor is 3.22× and 4.32×
compared with the baselines

(HiCOO and ALTO) executed

on the same AMD platform.

Based on the results reported in Kurt et al. [15], we compare

our results and STeF. We employ the identical AMD platform

as in [15]. Figure 5 illustrates the results, showcasing that

our approach surpasses STeF in terms of overall performance.

STeF incorporates a selective intermediate value storage tech-

nique during computation, while our approach leverages a

dynamic tensor remapping technique, resulting 2.12× average

speedup in total execution time. In datasets like Nell-2, since

there are only a few thousand indices along all the modes, the

selective intermediate value storage technique used in STeF

outperforms the dynamic tensor remapping technique used in

Dynasor.

Compared with the baselines, our approach achieves an

average speedup of 6.37×. Table III summarizes the overall

speedup achieved by our approach compared with the base-

lines for ranks between 16-256.

D. Impact of Super-shard Scheduling

Fig. 8: Total data remapped dy-

namically vs. total data commu-

nicated during the elementwise

computations of spMTTKRP

Section IV-A presents

the scheduling strategy

we used in this work to

distribute the super-shards

among CPU threads.

Here, the objective is to

distribute the nonzero

tensor elements equally

among the threads for

execution. Our scheduling

strategy guarantees the

maximum number of

nonzero tensor elements

scheduled for a thread does

not exceed 4/3 times the

optimal load in each mode

(see Section IV-A).

A state-of-the-art approach to scheduling super-shards

among threads in each mode is to distribute the super-shards

in block-cyclic manner [24].

E. Cost of Tensor Remapping

Figure 6 compares the state-of-the-art and our proposed

method in Section IV-A. The experiments are conducted on the

Intel Xeon platform. We also use the same FLYCOO tensor

partitioning parameters and memory layout for both cases. Our

proposed scheduling strategy achieves 1.1× to 14.2× speedups

on sparse tensors w.r.t. total execution time.

As shown in Figure 8, the overall volume of dynami-

cally remapped data during the computation (in all tensors)

(a) Nell-1 (b) Nell-2 (c) Flickr (d) Delicious (e) Vast

Fig. 7: Scalability with w.r.t. the number of threads on Intel platform (R = 16)

is consistently below 15% of the total data communicated

during the elementwise computations of spMTTKRP. Hence

the dynamic tensor remapping does not significantly contribute

to the total memory traffic. We determine the volume of data

transmitted in various data types, such as tensor elements and

factor matrices, by incorporating data element counters into

the source code. These counters allow us to measure and track

the amount of data communicated during the execution of the

program.

F. Scalability

Figure 7 shows the execution time of the tensors as the

number of threads is varied for R = 16. Note that execution

time is normalized, and the x-axis is in log scale. Utilizing

the 56 CPU threads leads to an 8.5× - 21× reduction in the

overall execution time compared with the single thread imple-

mentation. As shown in the roofline model (see Section V-G),

the spMTTKRP operation is a memory-bound computation.

Hence the speedup saturates as the number of CPU threads is

increased. Similar scalability is observed for R = 32,64,128,

and 256.

Fig. 9: Roofline analysis on Intel platform

G. Roofline Analysis

Figure 9 illustrates the roofline model [25], generated using

Intel Advisor [18] for the datasets on the Intel CPU. The arith-

metic intensity of the elementwise spMTTKRP computation

(see Section II-C) is used as the x-axis.

We consider two distinct cases to evaluate the impact

of dynamic tensor remapping: Case 1 involves executing

Dynasor with dynamic tensor remapping across all modes,

while Case 2 involves performing elementwise computation

without employing dynamic tensor remapping. In Case 2, we

organize the tensor based on shard ids in each mode and

perform elementwise computation across all modes without

dynamic remapping. For example, for a 3-mode input tensor,

we organize the tensor-based shards of mode 0 and perform

elementwise computation for modes 0, 1, and 2. This process

is repeated after ordering the tensor for all the modes, resulting

in multiple roofline values. The best performance value (y-

axis) among those is reported in Figure 9 as “without dynamic

tensor remapping”.

As depicted in Figure 9, including dynamic tensor remap-

ping significantly enhances the performance for all the tensors,

compared to the scenario where only the elementwise compu-

tation is performed without dynamic tensor remapping.

H. Impact of Factor Matrix Rank

Fig. 10: Impact of rank (R)

The total execution time

as the rank of the factor

matrices (R) is varied, de-

picted in Figure 10. Load-

ing the input factor ma-

trices dominates the exter-

nal memory traffic gener-

ated in Algorithm 2. Using

the same notation as Sec-

tion III, the total number

of the input factor matrix

accesses is proportional to

N ×(N −1)× ∣T ∣×R. Con-

sequently, the total CPU memory traffic is proportional to R.

Since spMTTKRP is a memory-bound computation for sparse

tensors (as highlighted in Section V-G), the total execution

time is proportional to R.

I. Impact of External Memory Size

Despite the possibility of compressing the total size of

the tensor using various tensor formats, excessive generation

of intermediate values during runtime can lead to memory

explosion. This can result in an out-of-memory error during

execution. To illustrate the resilience of Dynasor to the mem-

ory explosion, we use 2 of the largest tensors, Nell-1 and Flickr

(similar results have been observed in other datasets).

Figure 11 (a) and Figure 11 (b) show the total execution time

of Nell-1 and Flickr when executed on limited CPU external

memory. In the experiments, we varied the rank of the factor

matrices from 16 to 64. For Nell-1 and Flickr, the total external

memory requirement to store the tensor memory layout (i.e.,

including additional space to store remapped tensor), factor

matrices, and other metadata stays between 10 GB - 15.6 GB

(a) Nell-1

(b) Flickr

Fig. 11: Impact of external memory size. Missing data points

indicates out-of-memory due to memory explosion

for R values of 16, 32, and 64. Consequently, we vary the size

of the CPU external memory (of the Intel platform) between

128 GB (the total available memory) and 16 GB using the OS

settings for memory management.

Despite using the low-rank factor matrices (R = 16), ALTO

cannot perform spMTTKRP with 16 GB of external memory.

ALTO also incurs memory explosion as the rank increases,

making it impractical for higher ranks. The memory explosion

occurs due to excessive intermediate values generated during

the execution time. In contrast, HiCOO can be executed in

limited memory for low ranks (e.g., R = 16). However,

ALTO and HiCOO fail to complete the execution using limited

external memory as the rank increases (e.g., R = 64).

We can perform spMTTKRP in all the cases while achieving

minimum execution time. Furthermore, the execution time

remains almost the same as the external memory size is

decreased for both datasets.

J. Preprocessing Time

The preprocessing of an input tensor comprises three

stages: (1) super-shard generation for each mode, (2) Z-

Morton ordering of the super-shards, and (3) shard gener-

ation using the super-shards. We have parallelized the pre-

processing using OpenMP and Boost library [26]. Although

the focus of our paper is not on the preprocessing time,

Figure 12 compares the preprocessing time across various

baselines. We use the same Intel Xeon platform (see Sec-

tion V-A1) for all the implementations. The preprocessing

time of Dynasor is considerably shorter than that of HiCOO

for datasets that contain a large number of indices along

each mode. This distinction arises because the partition-

ing scheme employed by Dynasor focuses solely on the

nonzero elements, whereas the HiCOO partitioning scheme

operates across the entire index space, encompassing all po-

tential combinations of index values across all the modes.

Fig. 12: Preprocessing time on Intel

platform

For tensors with a small

number of mode in-

dices but a large num-

ber of nonzeros (e.g.,

Vast), the HiCOO for-

mat outperforms our

approach in preprocess-

ing time. Furthermore,

the ALTO format gen-

eration performs faster

than Dynasor due to

implementation ineffi-

ciencies in tensor ele-

ment ordering based on

Z-Morton. We intend to

address this issue in future work by further optimizing our

preprocessing implementation.

VI. CONCLUSION AND FUTURE WORK

This paper presented a novel parallel algorithm for spMT-

TKRP across all the modes of an input tensor on multi-core

CPUs. We reduced the total execution time of spMTTKRP

by employing a parallel algorithm that enables concurrent

processing of independent partitions of the input tensor. Fur-

thermore, our algorithm reduces the intermediate values being

communicated to external memory. The experimental results

demonstrate that our work achieves a geometric mean of 6.37×
speedup in execution time compared with the state-of-the-art

CPU implementations across widely-used real-world sparse

tensor datasets.
Our future work focuses on adapting the parallel algorithm

and FLYCOO tensor format for emerging heterogeneous sys-

tems and massively parallel computing platforms. We plan

to utilize massively parallel computing platforms, including

GPU, to perform spMTTKRP.

ACKNOWLEDGMENT

This work is supported by the National Science Founda-

tion (NSF) under grants OAC-2209563, CNS-2009057 and

in part by DEVCOM Army Research Lab under grant

W911NF2220159.

We also acknowledge Jiajia Li (North Carolina State Univer-

sity), Ahmed E. Helal (Intel Labs), and Fabrizio Petrini (Intel

Labs) for their support in setting up the baseline experiments.

Distribution Statement A: Approved for public release. Distri-

bution is unlimited.

REFERENCES

[1] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-
akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3551–3582, 2017.

[2] M. Mondelli and A. Montanari, “On the connection between learning
two-layer neural networks and tensor decomposition,” in The 22nd In-
ternational Conference on Artificial Intelligence and Statistics. PMLR,
2019, pp. 1051–1060.

[3] Z. Cheng, B. Li, Y. Fan, and Y. Bao, “A novel rank selection scheme
in tensor ring decomposition based on reinforcement learning for deep
neural networks,” in ICASSP 2020-2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020,
pp. 3292–3296.

[4] F. Wen, H. C. So, and H. Wymeersch, “Tensor decomposition-based
beamspace esprit algorithm for multidimensional harmonic retrieval,” in
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2020, pp. 4572–4576.

[5] S. Fernandes, H. Fanaee-T, and J. Gama, “Tensor decomposition for
analysing time-evolving social networks: An overview,” Artificial Intel-
ligence Review, pp. 1–26, 2020.

[6] S. Wijeratne, T.-Y. Wang, R. Kannan, and V. Prasanna, “Accelerating
sparse mttkrp for tensor decomposition on fpga,” in Proceedings of the
2023 ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, ser. FPGA ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 259–269. [Online]. Available:
https://doi.org/10.1145/3543622.3573179

[7] A. E. Helal, J. Laukemann, F. Checconi, J. J. Tithi, T. Ranadive,
F. Petrini, and J. Choi, “Alto: Adaptive linearized storage of sparse
tensors,” in Proceedings of the ACM International Conference on
Supercomputing, ser. ICS ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 404–416. [Online]. Available:
https://doi.org/10.1145/3447818.3461703

[8] J. Li, J. Sun, and R. Vuduc, “Hicoo: Hierarchical storage of sparse
tensors,” in SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2018, pp. 238–252.

[9] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “Splatt:
Efficient and parallel sparse tensor-matrix multiplication,” in 2015 IEEE
International Parallel and Distributed Processing Symposium, 2015, pp.
61–70.

[10] I. Nisa, J. Li, A. Sukumaran-Rajam, P. S. Rawat, S. Krishnamoorthy,
and P. Sadayappan, “An efficient mixed-mode representation of sparse
tensors,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3295500.3356216

[11] J. Li, B. Uçar, U. V. Çatalyürek, J. Sun, K. Barker, and R. Vuduc,
“Efficient and effective sparse tensor reordering,” in Proceedings of
the ACM International Conference on Supercomputing, ser. ICS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
227–237. [Online]. Available: https://doi.org/10.1145/3330345.3330366

[12] G. Favier and A. L. de Almeida, “Overview of constrained parafac
models,” EURASIP Journal on Advances in Signal Processing, vol.
2014, no. 1, pp. 1–25, 2014.

[13] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[14] D. S. Wise, “Ahnentafel indexing into morton-ordered arrays, or matrix
locality for free,” in Euro-Par 2000 Parallel Processing, A. Bode,
T. Ludwig, W. Karl, and R. Wismüller, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, pp. 774–783.

[15] S. E. Kurt, S. Raje, A. Sukumaran-Rajam, and P. Sadayappan, “Sparsity-
aware tensor decomposition,” in 2022 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2022, pp. 952–962.

[16] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM
journal on Applied Mathematics, vol. 17, no. 2, pp. 416–429, 1969.

[17] A. C. de Melo and R. Hat, “The new linux ’ perf ’ tools,” 2010.

[18] K. O’Leary, I. Gazizov, A. Shinsel, R. Belenov, Z. Matveev, and
D. Petunin, “Intel® advisor roofline analysis,” THE CHANGING HPC
LANDSCAPE STILL LOOKS THE SAME, p. 56, 2017.

[19] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis.
(2017) FROSTT: The formidable repository of open sparse tensors and
tools. [Online]. Available: http://frostt.io/

[20] J. Li, B. Uçar, U. V. Çatalyürek, J. Sun, K. Barker, and R. Vuduc,
“Efficient and effective sparse tensor reordering,” 2019. [Online].
Available: https://github.com/hpcgarage/ParTI

[21] J. Li, M. Lakshminarasimhan, X. Wu, A. Li, C. Olschanowsky, and
K. Barker, “A parallel sparse tensor benchmark suite on CPUs and
GPUs,” 2020. [Online]. Available: https://gitlab.com/tensorworld/pasta

[22] A. E. Helal, J. Laukemann, F. Checconi, J. J. Tithi, T. Ranadive,
F. Petrini, and J. Choi, “Alto: Adaptive linearized storage of sparse
tensors,” 2021. [Online]. Available: https://github.com/IntelLabs/ALTO

[23] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley,
J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry et al.,
“An updated set of basic linear algebra subprograms (blas),” ACM
Transactions on Mathematical Software, vol. 28, no. 2, pp. 135–151,
2002.

[24] L. Prylli and B. Tourancheau, “Efficient block cyclic data redistribution,”
in Euro-Par’96 Parallel Processing: Second International Euro-Par
Conference Lyon, France, August 26–29 1996 Proceedings, Volume I
2. Springer, 1996, pp. 155–164.

[25] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth
Edition: A Quantitative Approach, 5th ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2011.

[26] B. Schäling, The boost C++ libraries. XML press Laguna Hills, 2014,
vol. 3.

