
Using Logging-on-Write to Improve Non-Volatile
Memory Checkpoints via Processing-in-Memory

Kleber Kruger
Institute of Computing

State University of Campinas
Campinas, Brazil

kleber.kruger@ufms.br

Ricardo Pannain
Institute of Computing

State University of Campinas
Campinas, Brazil

pannain@ic.unicamp.br

Rodolfo Azevedo
Institute of Computing

State University of Campinas
Campinas, Brazil

rodolfo@ic.unicamp.br

Abstract—NVM architectures must keep consistent data in case
of failures, a property called crash consistency. A common way
to do so is by checkpoint mechanisms. However, most of the
strategies developed have performance and usability problems.
Among main limitations are non-software-transparent strategies,
the addition of logging operations in the critical execution path,
and increased writes to NVM, resulting in significant bandwidth
usage between processor and memory. DONUTS solves these
problems by a hardware mechanism that provides crash consis-
tency via checkpoints integrated into cache replacement policy
using Processing-in-Memory to perform logging operations. Its
approach reduces writes from the processor’s memory controller
and the NVM external bandwidth usage but generates unnec-
essary log entries. This paper expands DONUTS to a multi-
core scenario evaluating two processing-in-memory strategies.
The first logs during read operations, and the second uses a
new lazy strategy to log data exclusively on write operations
when these operations are effectively needed. Finally, we compare
runtime performance, log rate, energy consumption, and memory
space. Results show that our new logging-on-write strategy
maintained the DONUTS runtime performance but reduced
energy consumption in multi-core applications by around 33%
due to an average reduction of 42% in log operations. Also,
the new strategy generates a checkpoint size 5x smaller than
the previous system, maximizing the use of NVM. Compared
to other systems, DONUTS presented an average overhead of
1% to 3% against up to 7% of previous software-transparent
better-performing projects.

Index Terms—processing-in-memory, in-memory computing,
non-volatile memory, checkpointing, crash consistency.

I. INTRODUCTION

Non-Volatile Memory (NVM) is a technology emerging as

an alternative to DRAM [1]. It provides fast access latency,

lower power consumption, and higher storage density than

current technology. Hence, several studies [2]–[4] have ex-

plored its use as a new component in memory and storage

hierarchy, replacing or using it in addition to DRAM. With

NVM, applications can access persistent data directly in main

memory by load/store instructions, avoiding data serializa-

tion/deserialization and paging in/out slower storage devices

[5]. Examples of non-volatile memory include Phase Change

Memory (PCM) [6], Spin-Torque Transfer RAM (STT-RAM)

[7], Resistive RAM (ReRAM) [8], and 3D XPoint [9].

Despite advantages, NVM architectures need to ensure data

consistency in case of failures, a property known as crash

1 void updateNode(int old_value, int new_value)
2 {
3 NVHeap *nv = NVHOpen("foo.nvheap");
4 NVList::VPtr a = nv->GetRoot<NVList::NVPtr>();
5 AtomicBegin {
6 while(a != nullptr) {
7 if(a->get_value() == old_value)
8 a->set_value(new_value);
9 a = a->get_next();

10 }
11 } AtomicEnd;
12 }

(a) Software-based

1 void updateNode(int old_value, int new_value)
2 {
3 struct List *a = root_pointer;
4 while(a != nullptr) {
5 if(a->value == old_value)
6 a->value = new_value;
7 a = a->next;
8 }
9 }

(b) Software-transparent

Fig. 1: Examples of software-based and software-transparent

implementations. The second does not require changes to the

application’s source code.

consistency [10]. An example of failure occurs when an

atomic update to a data structure modifies two cache lines.

If the system crashes after exclusively one cache line reaches

persistent main memory, the data structure turns inconsistent

because of the partial update in NVM [11]. This behavior is not

a problem on volatile memory systems due the main memory

is reset upon a system restart. However, the inconsistent data

state remains on NVM-based systems even after a restart.

Therefore, NVM-based architectures must ensure recovery to

a consistent version, also called a checkpoint [12]. Thus,

these systems need to perform persistent-data updates by

atomic transactions in NVM, i.e., all writes in an update are

successfully committed, or none performs. This property is

also named atomic durability [13].

Projecting crash consistency mechanisms has been a chal-

lenge for NVM architectures since most strategies can lead

to three problems: 1) non-software-transparent approaches,

which restrict the NVM usage to applications based on transac-



(a) Other mechanisms (b) DONUTS

Fig. 2: Traditional crash consistency mechanisms compared to

DONUTS logging scheme via Processing-in-Memory.

tional memory models. As shown in Figure 1, software-based

approaches need programmers to rewrite the application’s

source code to adapt to a new programming model, making

it a costly and error-prone task [3]; 2) some mechanisms

[11], [13], [14] generate persistence operations on the critical

execution path (e.g., via software write-back instructions, such

as clflush, clwb, e dccvap), degrading performance; and

3) due to logging operations, crash consistency mechanisms

tend significantly to increase the number of writes to NVM, as

shown Figure 2a. So, in addition to conventional writes from

an application, also it is necessary to write recovery data in

specific NVM regions. These logging operations executed by

the memory controller increase the bandwidth usage on the bus

between processor and memory, causing performance degra-

dation in high-demand memory access applications. DONUTS

[15] solves this problem using Processing-in-Memory1 (PIM)

to perform logging operations in the background, reducing data

movement between processor and memory (Figure 2b), and

consequently, the NVM’s external bandwidth usage. However,

its logging-on-read strategy generates excessive entries since

some data loaded from memory is not modified during a

specific part of the program, generating unnecessary logging

operations and increasing the checkpoint memory space.

This work expands DONUTS [15] by implementing a new

PIM logging strategy (LoW) capable of performing exclu-

sively on modified data, reducing the number of unnecessary

logs generated by the original method (we named it LoR).

Furthermore, our strategy presents a different behavior than

LoR since it delays log writes to the commit phase on an

epoch, unlike LoR, which performs logging during the epoch

execution. Figure 3 shows the read/write rate of SPEC CPU

2017 applications observing that the amount of read access

is almost twice the write access rate. We also note that our

PIM implementation model is compatible with any resistance-

1Processing-in-Memory (PIM) is also known in the literature by the
terms: Near-Data Processing (NDP), Near-Memory Processing (NMP), Near-
Memory Computing (NMC), or in the case of storage devices, In-Storage
Processing (ISP).

Fig. 3: Read/write rates of SPEC CPU2017 applications.

based NVM technology by adopting the already established

DDR standard in the industry. Results show that our proposed

strategy reduced logging by 42%, decreasing 33% of energy

consumption in multicore applications while maintaining the

same DONUTS performance. Compared with another better-

performing system, our proposal presented a runtime overhead

of 1% to 3% against up to 7% of PiCL [2].

This paper is organized as follows: Section II explains

background concepts, such as terms about crash consistency

mechanisms, logging techniques, and PIM definitions. Section

III describes PIM logging strategies and its implementation in

the DONUTS mechanism, with their evaluation presented in

Section IV. Finally, Section V shows related works and Section

VI concludes this paper.

II. BACKGROUND

A. Crash Consistency

The principle of crash consistency techniques for NVM

systems is periodically saving consistent memory data (plus

CPU state) to have a checkpoint when a crash occurs. A

checkpoint keeps a consistent memory snapshot, and an epoch

is the time interval between two checkpoints [12]. An epoch

comprises three phases: execution, commit, and persistence.

During execution, applications can read and write data in

volatile caches by load/store operations. On ending an epoch,

the system commits all modified (dirty) data, creating a consis-

tent snapshot (but not durable yet) of the epoch in execution.

This process allows the running epoch to finish, and a new one

can start. However, the system must persist the committed data

to NVM, turning it durable after the persistence phase. The

epoch length depends on checkpointing mechanisms strategy,

which usually uses a periodic time or interval of instructions.

DONUTS establishes dynamic epochs by cache thresholds or

timeout events.



(a) Alternate epochs model

(b) ThyNVM overlapping epochs model

Fig. 4: Checkpointing scheme with (a) alternate phases and

other with (b) phase overlapping.

Crash consistency systems need to overlap epochs to obtain

viable performance. According to ThyNVM [12], switching

between execution and checkpointing (commit + persistence)

phases without overlapping can incur significant performance

degradation, with checkpointing consuming up to 35.4% of

all execution time in memory-intensive workload applications.

This problem is even more costly in nowadays systems with

large-capacity caches. Thus, instead of alternating between

phases as shown in Figure 4a, modern crash consistency

mechanisms [2]–[4] overlap them to remove persistence from

the critical path and prevent stalls, mitigating performance

degradation [16]. Figure 4b shows an example of ThyNVM.

The active working copy Wactive corresponds to a region

where the running data is updated. While executing the

current epoch Wactive, the previous Clast is persisted to

NVM. However, a crash during Clast persistence could leave

inconsistent checkpoint data. Therefore, ThyNVM maintains

the penultimate checkpointing Cpenult until Clast is finished.

So, this scheme overlaps three epochs: while the current one

(epoch 2) is running, the previous (epoch 1) is checkpointing,

and the penultimate (epoch 0) corresponds to a safe epoch

— i.e., an epoch recoverable in a system crash. In a fully

asynchronous model, previous epochs can be committed and

queued in order to persist to NVM during an epoch in

execution.

B. Write-Ahead Logging

The most common strategy to ensure crash consistency in

NVM systems is Write-ahead Logging (WAL), subdivided into

undo-logging or redo-logging techniques. In a redo-logging

scheme (Figure 5a), cache evictions are temporarily held in

a redo-buffer to preserve main-memory consistency and later

written to original memory address regions. Like a CPU write-

buffer, the NVM redo-buffer is snooped on every memory

access to avoid returning outdated data [2]. So, redo-logging

requires additional mapping to find the latest data consistent

version because it writes indirectly since the updated data is

first stored at a redo-buffer region and later updated in its

default locations. A second way is an undo-logging scheme

(Figure 5b), that on a cache eviction, the system first reads

undo-data (original data before modifications) from its default

(a) Redo Logging (b) Undo Logging

Fig. 5: Redo-logging and undo-logging schemes.

memory address. Then, it persists in an NVM undo-buffer and

finally writes evictions locally to memory. This step is called

the read-log-modify access sequence. For example, suppose a

system crash or loses power. The system rollbacks these writes

by applying undo-buffer entries to recover a valid checkpoint.

In summary, redo-logging allows recovery to a consistent state

redoing pending operations, while undo-logging recovers by

returning incomplete updates to consistent state values.

C. Processing-in-Memory

Processing-in-Memory allows memory devices to run sim-

ple processing operations, making these systems able to

compute data in a cache, main memory, or local external

storage. This strategy reduces the cost of moving data between

processor and memory [17]. Meantime, building PIM archi-

tectures requires at least two challenges. First, programmers

must identify which parts of an application are processable in

memory, and architects must understand restrictions imposed

by PIM logic design specifications. Second, after identifying

PIM opportunities and designing their architectures, program-

mers need a way to extract PIM benefits without having to

resort to complex programming models [18]. Examples where

PIM is employed are: bulk copying and data initialization

[19], [20], bitwise operations on bulk data [21]–[24] and

simple arithmetic operations (e.g., addition, multiplication,

implication) [20], [25]–[27].

In DONUTS [15], PIM is used for logging operations,

avoiding commands, and data movement between the proces-

sor’s memory controller and NVM. In traditional schemes,

memory is passive, i.e., just obeying commands from the

memory controller. For example, to perform a copy operation

from A to B address, the memory controller sends signals

to memory to activate rows and columns of the cell array at

address A, moving data to row buffers. Subsequently, it sends

new commands to activate rows and columns of the cell array

at address B to copy the content. Noting that both data and

the destination are already in the main memory, DONUTS

performs undo-logging without the immediate need for the

memory controller, taking advantage of the access command to

trigger a PIM copy operation from traditional banks to specific

log banks.

D. DONUTS

DONUTS [15] is based on overlapping epochs to allow

an epoch in the persistence phase not to block another in

execution, making them independent (decoupled) and without



(a) Associative set threshold (b) Cache capacity threshold

Fig. 6: DONUTS thresholds (75% for the associative set and

50% for the cache capacity). R denotes clean blocks and W
dirty blocks. Both figures exemplify a situation where a new

cache-block allocation triggers an epoch commit event.

the need for synchronization between phases. A commit event

occurs under three conditions: a) on reaching an associative

set threshold, b) on reaching the cache capacity threshold, and

c) on reaching a specified timeout.

The epoch dynamic behavior results from the DONUTS

cache replacement policy, based on a conventional Least

Recently Used (LRU), with a slight modification so that cache

block evictions victimize only clean blocks. Figure 6a shows

a checkpoint example on case A, with an associative set

threshold defined to 75%. When a set reaches the threshold,

a commit event generates a checkpoint of the current epoch,

persisting modified blocks in the background and releasing

the system to start a new epoch (SystemID++). In order

to track the epoch of data updates, DONUTS adds a field

EpochID (EID) in each cache block. Another commit event

example occurs when the cache reaches the capacity threshold

(case b), defined in 50% as shown in Figure 6b. Although all

associative sets did not exceed the defined threshold (75%),

more than half of the cache blocks were dirty, causing a

checkpoint. A third possible checkpoint event occurs when

the cache exceeds a timeout between the current time and the

last persisted checkpoint. This third case prevents the system

from keeping lagged checkpoints.

III. LOGGING VIA PROCESSING-IN-MEMORY

DONUTS implements logging operations by slightly modi-

fying NVM circuits and the DDRx protocol. In each memory

module chip, one log bank is added in addition to conventional

banks. These banks are visible only to checkpoint routines

and act outside the application’s address space. Table I shows

a commands list sent by the memory controller to DIMM.

First, the read/write command with early log (LRD/LWR) copy

original data from conventional banks to on-chip log banks

in the background before each read operation. Next, the LOG
command creates a log entry composed of data plus its original

physical address (metadata - formed by concatenating bits

from the row and column sent during activation plus the

read/write operation). Finally, CKP closes the log-banks row

buffers and marks the current epoch checkpoint as finished.

Figure 7 details command sequence steps along with the

latency times of each operation (represented by labeled ar-

rows). Black circles show an observation point to highlight. At

point 1, upon receiving an ACT command, the memory system

TABLE I: Memory controller command list.

CMD Description
NOP ignores all inputs

ACT activates a row in a particular bank

RD initiates a read burst to an active row

WR initiates a write burst to an active row

LRD creates a new log entry and a read burst to an active row

LWR creates a new log entry and a write burst to an active row

LOG mounts the physical address metadata

PRE closes a row in a particular bank

CKP closes log row buffers and creates a checkpoint

activates a word line, allowing sense amplifiers to interpret

the cell contents of the selected row and temporarily store it

in a row buffer. This cost is a Row Address Strobe (tRAS)

latency, being only necessary when the requested data is not

in the already activated line. Once a line is active, the memory

controller can send read/write commands (point 2), selecting

a column from the opened line and sending the read value to

the in/out buffer (case a read) or receiving from in/out buffer

a value to be written to cell (case a write). This latency is

called Column Access Strobe (tCASdata).

Unlike RD and WR commands, LRD and LWR simultaneously

log data, i.e., copy selected cell content to log buffer. Note

that in this step, the system can build the data address since

it stored row + column bits in a temporary register (shown

at point 3) during the activation command and the LRD (or

LWR) command, respectively. After this sequence, on a read

operation, for instance, the NVM has the requested data in both

output and log buffers. So, it is possible to send output data

(point 4) while creating a log entry (joining data to metadata)

and subsequently write it to the log bank in the background

(point 5) after a LOG command. In order to optimize the

logging procedure, the system keeps log bank row buffers

open until their capacity limit or a CKP command is received.

This sequence occurs for all memory accesses within an epoch

until a commit event occurs (shown at point 6). In this case,

outstanding log entries in row buffers must be written to NVM

cells, making the checkpoint persistent. As row buffers are

open, a write operation in the background results in a page

hit. This latency corresponds to CAS device latency (tCAS).

�������	
�������	

��� ��

���� ��������

���
�������


�������
��� ������


���

������

���

������

�������	
�������	

��� �	

���� ��������

���
�������


�������

�� ������


��� ��� ��� ���
���

���

��
��
��
�

�����
������

	�
���
������

���
�

� 	




�

�

� 	

�




� 


Fig. 7: Command sequence during an epoch on running.



��		�������

������������

�

������

���

���� ��	
��
�	�� ��
�	��

�

�
�

�

�

���
�	��

��
�	��



������


��
�	�� � commit

��
�	��

(a) Logging-on-Read

	��
���	��


	��
���	 ���

�

������

���

���� ��	
��
�	�� ��
�	��

�

�
�

�

�

���
�	��

��
�	��



������


��
�	�� � commit

��
�	��

(b) Logging-on-Write

Fig. 8: DONUTS logging strategies.

A. Logging Strategies

DONUTS [15] is a crash consistency mechanism based on

undo-logging. So, unlike redo-logging, no translation tables

are needed because cache evictions are written to default

memory locations. Figure 8 shows the original DONUTS

Logging-on-Read (LoR) strategy and our new implementation,

classified as Log-on-Write (LoW). In the first one, logs are

performed from read operations, taking advantage of open-

ing the memory row buffers. Since the crash consistency

mechanism logs on the same read operation, the data copy

from conventional to log banks generates no additional latency

because the log row buffers are kept open. So, an additional

latency (CASlog) only occurs in log-row-buffer overflows.

This strategy dilutes log operations during the execution of the

current epoch. However, it generates unnecessary log opera-

tions since the data loaded from memory may not be modified

in the current epoch. In contrast, the LoW strategy logs on

write access, taking advantage of opening lines during write

access to copy the data not yet modified from conventional

to log bank. This process takes advantage of the read-modify-

write nature of the DDRx protocol because when writing to a

memory cell, the data is first copied to the row-buffer in the

row opening process, modified, and only written back to the

opened cells in the array.

B. Implementation

Our logging strategy was added to DONUTS design and im-

plemented in Sniper simulator 7.4. In the memory controller,

we implement the logging strategies described in Figure 8.

Thus, after sending data from the main memory to Last Level

Cache (LLC), the NVM controller makes a PIM logging

operation, simulating data copying from conventional to log

banks. This background operation takes advantage of opened

row buffers in log banks, generating no additional cost except

in buffer overflow or after a checkpoint commit. In these

cases, data in the row buffers persist in cell arrays. The

row buffers size and the persistence cost latency from row

buffers to NVM cells (determined by CAS device latency)

are configurable. Except for these modifications, no other

component was changed.

Beyond DONUTS, we also carefully implemented PiCL

[2] and NVOverlay [28] in the same simulator according to

TABLE II: Configuration system.

Processor 2 GHz

Number of cores 2-16

L1 D/I Cache Private 32KB, 4-way, 64B block; 1 cycles hit

L2 Cache Private 256KB, 8-way, 64B block; 4 cycles hit

L3 Cache Shared 2MB, 8-way, 64B block; 30 cycles hit

NVM latencies 20ns read, 200ns write (STT-RAM)

DONUTS parameters Thresholds = 100% associative set, 75% cache,

50ms timeout; 4KB log row buffer

PiCL parameters 32 entries on-chip undo logging; acs-gap = 3

its specifications. Thus, the MESI cache coherence policy

was modified to add the respective mechanism’s commit

and checkpoint events. Also, to implement NVOverlay we

add the triggers in the cache coherence protocol to version

the logs according to the front-end system called Coherent

Snapshot Tracking (CST), which after versioning them sends

them to a Multi-snapshot NVM Mapping (MNM), back-end

component responsible for writing logs in the background

on NVM. All implementations are available at: https://github.

com/kleberkruger/donuts.

IV. EVALUATION

In order to evaluate LoW performance, we executed ex-

periments using SPEC CPU2017 (single-core), PARSEC, and

Splash2 (multi-core benchmarks integrated into Sniper Simu-

lator). The experiments ran one billion instructions for each

application, and system configuration parameters were sim-

ilar to those defined in PiCL [2], except by NVM latency

parameters updated to STT-RAM technology [29], as shown

in Table II. Our first test set considered DONUTS perfor-

mance in single-core and multi-core models ranging from 2

to 16 cores. The aim was to evaluate the runtime overhead

between LoR and LoW strategies and compare them to other

software-transparent projects. The following tests observed

both DONUTS logging strategies regarding log reduction rate,

memory space, and energy consumption.

A. Runtime Performance

Our first tests evaluated the DONUTS performance by

comparing it to PiCL [2] and NVOverlay [28], the better-

performing crash consistency mechanisms so far. As shown

in Table II, we configured DONUTS with 4K log row buffer,

associative-set, and cache-capacity thresholds at 100% and

75%, respectively, and timeout for checkpointing of 50ms.

In PiCL, the gap between epochs was defined at 30 million

instructions, and the acs-gap parameter (window size for

pending epochs persistence) was assigned a value of three

according to original paper settings.

1) Single-core Performance: Figure 9 shows the single-

core performance of DONUTS using LoR and LoW strategies

compared to PiCL. NVOverlay was not evaluated because its

design is restricted to multi-core architectures. On average, the

PiCL runtime overhead was 4.6% against 2.8% of DONUTS



Fig. 9: Single-core performance of DONUTS and PiCL.

(a) 2-cores (b) 4-cores

(c) 8-cores (d) 16-cores

Fig. 10: Multi-core performance of DONUTS, PiCL and NVOverlay.

LoW and 2% on LoR strategy. The cactuBSSN and cam4
applications had significantly varied overhead between both

DONUTS logging strategies. In cactuBSSN, the LoR strategy

log flow generated an average memory bandwidth usage of

17% (versus 10% for LoW) and a log overhead of 29%. On the

other hand, on cam4, the LoW strategy got a low log reduction

rate (3.58%), justifying a better LoR performance. Meantime,

LoR and LoW strategies presented a similar performance in

most applications. This result occurs because although the

LoR strategy generates more significant log writes to NVM,

their logs are dissolved during the running epoch. In contrast,

the LoW strategy concentrates logs on the persistence phase,

causing queue delay increases during writes to log banks.

However, DONUTS performs these operations outside the

critical execution path due to overlapping epochs and writes

to log banks in the background. Finally, considering average

bandwidth usage, both DONUTS strategies maintained the

same average of the baseline system while PiCL increased by

3%. Therefore, DONUTS presented 8% of average bandwidth

usage, and PiCL obtained a result 1.37x higher than DONUTS.

2) Multi-core Performance: Figure 10 shows PiCL,

NVOverlay and DONUTS runtime overheads on multi-core

scenarios ranging from 2 to 16 cores. Both DONUTS versions

obtained close runtime overheads, reaching approximately up

to 3.7% and 3.3% in the LoW and LoR strategies, respectively.

In contrast, due to increased memory bandwidth usage caused

by intensified writes from on-chip undo buffer on multi-core

architectures, when scaling to 8-16 cores, PiCL had a runtime

overhead of 5.3% and 6.8%, respectively. For example, the

bandwidth usage in the ocean application went from 43%

in 2-cores, to 76% in 4-cores, 87% in 8-cores, and 98%

in a 16-cores architecture. On the other hand, NVOverlay

presented worst performance than PiCL on architectures with

2-4 cores (2.3% vs 6.4%, and 3.4% vs 5.5% of overhead),



(a) SPEC 2017 single-core applications. (b) Splash2 multi-core applications (8 cores).

Fig. 11: Number of buffer overflows per 1 billion instructions.

(a) SPEC 2017 single-core applications. (b) Splash2 and Parsec multi-core applications (8 cores).

Fig. 12: Logging reduction rate of LoW to LoR.

similar in 8 cores (5.2% vs 5.1%), and superior when scaled

to 16 cores (6.8% vs 4.5%). This performance is because

the increasing of cores allows more versioned domains (VDs)

components, which are used to synchronize versions of logs

sent from its front-end to back-end component. With greater

efficiency of VDs, more data is merged, reducing write-

amplification (redundant log writes). Furthermore, its average

runtime performance was worse in all tests compared to

DONUTS. In addition, NVOverlay presented higher overheads

in lu, radix and water applications, since the behavior

of consecutive writes to a memory address intensifies data

versioning, generating a significant increase in the logs (763%,

824% and 492%, respectively).

3) Buffer Overflows: Runtime overheads can be explained

by additional latency in logging operation when on-chip undo

buffer (PiCL) or log row buffer (DONUTS) overflows. In the

first case, no more entry is available in the on-chip undo buffer,

needing to persist its log entries in the NVM. In the second,

DONUTS overflowed the log row buffer size, being necessary

to write it in the log bank cell array. CASlog determines the

cost of this operation. Figure 11 exhibits an average of buffer

overflows per 1 billion instructions for each application. In

applications where PiCL presented higher overheads compared

to DONUTS (such as lbm and cam4 from SPEC CPU2017,

and ocean from Splash2), the number of additional latencies

generated by the on-chip undo buffer was about 2x higher

than DONUTS LoW. On the other hand, in mcf and ocean

applications, the amount of buffer overflows in DONUTS LoR

was higher than PiCL because both applications intensify read

accesses (97% and 73%, respectively). However, this behavior

does not reflect higher runtime overhead since, as applications

do not modify cache data, the DONUTS dynamic epochs result

in longer intervals due to the checkpoint events frequency

depending on the overflow of dirty blocks in the cache.

B. Logging Reduction Rate and Checkpoint Size

The second test set analyzed logging reduction rate and

memory space aspects between both DONUTS logging strate-

gies. Figure 12 shows that the LoW strategy obtained an

average log reduction of 23% on SPEC CPU2017 appli-

cations and 42% on multi-core applications of the Parsec

and Splash2 benchmarks. In total, LoW strategy showed

improvements in about 87% of applications, with 10%

of them (mcf, blackscholes, streamcluster and

swaptions) leading reduction rate above 97%, given in-

tensive read access behavior of these applications. In the

streamcluster application, for example, the read memory

access rate is 98.9%. In another 10% of the applications, LoR

obtained a better rate. In cholesky and vips, where LoW

log rate was 11% and 5% higher than in LoR, 53% and 50% of

the accesses to memory was for write operations, respectively.

Figure 13 shows memory space (in megabytes) spent cre-

ating checkpoints in Splash2 applications. The LoR strategy

consumes 16 MB of memory in fft application, while LoW



Fig. 13: DONUTS checkpoint size.

(a) SPEC 2017 single-core applications.

(b) Splash2 and Parsec multi-core applications (8 cores).

Fig. 14: Energy consumption reduction of LoR → LoW.

consumes a maximum of 1.5 MB. The average size required

for an LoR checkpoint is 5.2 MB versus 0.9 MB for LoW.

C. Energy Consumption

We used NVMExplorer [29] to generate accurate energy

consumption estimates, whose tool contains updated latency

and power consumption parameters of the leading current

technologies in the literature. In general, write operations on

NVM use 10x to 450x more energy than read, depending on

the technology employed.

Figure 14 shows the energy consumption reduction of

crash consistency mechanisms using as parameter STT-RAM

memory. The columns present the energy reduction rate of the

LoW strategy compared to LoR. In the mcf application of

Figure 14a, for example, LoW reduced energy consumption

by 94% due to 97% log reduction (shown in Figure 12)

which, consequently, would generate costly write operations to

NVM. On the other hand, negative values seen in cholesky,

(a) Logging-on-Read (b) Logging-on-Write

Fig. 15: Energy consumption per operation.

radiosity and vips applications mean higher energy con-

sumption in LoW. However, on average, the energy consump-

tion reduction for SPEC CPU2017 single-core applications

was 16%, and in multi-core applications, whose average log

reduction rate was higher, energy consumption was reduced

by 33%.

Figure 15 displays the operations with the greatest impact

on energy consumption when running the Parsec benchmark

application suite on SST-RAM memory. In the LoR strategy,

logging operations were responsible for 71.3% of energy

consumption, reducing to 46.5% in the LoW strategy. By

reducing the total energy cost, reading operations on energy

consumption represent a more significant cost, growing from

3.7% to 7%.

V. RELATED WORKS

Existing works in the literature have proposed different

methods to provide crash consistency. One way to categorize

them is to separate into software or hardware solutions.

The first support fault consistency by compilers or software

libraries based on Persistent Transactional Memory (PTM)

programming models, while hardware solutions modify archi-

tecture design to provide consistency on persistent memories.

Hardware solutions have been more attractive alternatives, as

they do not add new instructions to applications, generating

less overhead. Another way to categorize these mechanisms

is by the crash consistency technique adopted. The most

common is by logging, which subdivides into redo-logging

[3], [5], [10], [12], [14], [30]–[35], undo-logging [2], [11],

[13], [15], [36], or a hybrid solution of both [37], [38].

Furthermore, other works have implemented shadow-paging

[1], [16], [39], logging-structured [40] and out-of-placing

[4] updates. Finally, it is also possible to categorize them

according to their programming model (software-based or

software-transparent). Table III summarizes some of the crash

consistency mechanisms proposed in the literature.

Software-based: Software solutions [10], [14], [34], [36],

[41]–[44] provide crash consistency by instructions for impos-

ing fence and synchronizing read/write operations (mfence
e sfence) and by instructions to force write-backs to cache

lines (clflush, clwb, e dccvap). In addition to imple-

menting a PTM, Mnemosyne defers checkpointing and log

truncation to eliminate them from the transaction’s critical

path. Later, Atlas [42] guaranteed atomicity of the outer



TABLE III: Summary of some crash consistency mechanisms.

* Note: S.T.: software-transparent; PIM: processing-in-memory.

Project Type Technique S.T. PIM
ATOM [11] hardware undo-logging

BPFS [39] software shadow-paging

BPPM [30] software redo-logging

CCHL [5] hardware redo-logging

DCT [36] hardware undo-logging

DHTM [31] hardware redo-logging

DONUTS [15] hardware undo-logging � �
Dual-Page [1] hardware shadow paging �
DudeTM [10] software redo-logging

FWB [37] hardware undo+redo-logging

HOOP [4] hardware out-of-place �
LOC [32] hardware redo-logging

LSNVMM [40] software log-structured

Mnemosyne [14] software redo-logging

MorLog [38] hardware undo+redo-logging

NICO [3] hardware redo-logging �
NV-Heaps [41] software redo-logging

NVOverlay [28] hardware shadow-paging �
PiCL [2] hardware undo-logging �
Proteus [13] hardware undo-logging

ReDU [33] hardware redo-logging

SoftWrAP [34] software redo-logging

SSP [16] hardware shadow paging

ThyNVM [12] hardware redo-logging �
WrAP [35] hardware redo-logging

critical sections by extending them through semantic locks.

NVThreads [43] was based on Atlas to provide an immedi-

ate replacement for pthreads. On the other hand, SFR [44]

provided persistence in thread regions delimited by sync

operations. Recent researches [45], [46] have improved PTM

scalability with better concurrency control protocols and hy-

brid logging schemes in DRAM + NVM.

Hardware-based: Hardware strategies mitigate the runtime

overhead of software solutions. However, despite being hard-

ware, most of them [4], [5], [11], [13], [16], [31]–[33], [35]–

[38] are not transparent to software, depending on program-

ming models PTM-based to indicate atomic transactions, being

hardware restricted to handle logs and checkpoint metadata.

In contrast, other works [1]–[4], [12] proposed software-

transparent solutions. ThyNVM, for example, adopts a syn-

chronized overlapping epochs model, but the need for synchro-

nization affects system performance, especially in multicore

scenarios. PiCL establishes a concept of multi-undo-logging,

which decouples system epochs and allows asynchronous

persistence outside the critical execution path, but its model

generates excessive writes in the NVM. NICO [3] designed

a lightweight checkpointing scheme that needs to flush and

modify a smaller amount of data when creating a consistent

snapshot of persistent memory data. However, like PiCL,

it also increases the traffic between processor and memory.

DONUTS [15] distinguishes them by exploiting Processing-

in-Memory, but its LoR strategy creates unnecessary entries.

VI. CONCLUSION

Although recent works have proposed alternatives to reduce

runtime overhead, logging operations tend to multiply the

number of writes to NVM and significantly increase data

movement between processor and memory. DONUTS pro-

poses a logging strategy via PIM that reduces the external

bandwidth usage but generates an excessive amount of un-

necessary logs, negatively impacting the internal bandwidth,

energy consumption, and the device’s useful lifetime. On the

other hand, our strategy maintains DONUTS performance

while reducing log writes by up to 42% on average, reach-

ing up to 99% in specific applications with intensive read

access. Consequently, as NVM power/energy consumption

is a function of the number of reads/writes, our logging

strategy positively impacts the energy consumption, showing

an average reduction of 32% in multi-core applications.

ACKNOWLEDGMENT

This project is supported by FAPESP (2013/08293-

7, 2019/26702-8), CNPq (438445/2018-0, 312088/2020-5),

CAPES (Finance Code 001), and FAEPEX.

REFERENCES

[1] S. Wu, F. Zhou, X. Gao, H. Jin, and J. Ren, “Dual-page checkpointing:
An architectural approach to efficient data persistence for in-memory
applications,” ACM Trans. Archit. Code Optim., vol. 15, no. 4, Jan. 2019.

[2] T. M. Nguyen and D. Wentzlaff, “Picl: A software-transparent, per-
sistent cache log for nonvolatile main memory,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2018, pp. 507–519.

[3] X. Wei, D. Feng, W. Tong, J. LIU, and L. Ye, “Nico: Reducing
software-transparent crash consistency cost for persistent memory,”
IEEE Transactions on Computers, vol. 68, no. 9, pp. 1313–1324, 2019.

[4] M. Cai, C. C. Coats, and J. Huang, “Hoop: Efficient hardware-assisted
out-of-place update for non-volatile memory,” in 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA),
2020, pp. 584–596.

[5] X. Wei, D. Feng, W. Tong, J. Liu, C. Wang, and L. Ye, “Cchl:
Compression-consolidation hardware logging for efficient failure-atomic
persistent memory updates,” in 49th International Conference on Paral-
lel Processing - ICPP, ser. ICPP ’20. New York, NY, USA: Association
for Computing Machinery, 2020.

[6] Q. Wu, F. Sun, W. Xu, and T. Zhang, “Using multilevel phase change
memory to build data storage: A time-aware system design perspective,”
IEEE Transactions on Computers, vol. 62, no. 10, pp. 2083–2095, 2013.

[7] H. Noguchi, K. Ikegami, K. Kushida, K. Abe, S. Itai, S. Takaya,
N. Shimomura, J. Ito, A. Kawasumi, H. Hara, and S. Fujita, “7.5 a 3.3ns-
access-time 71.2μw/mhz 1mb embedded stt-mram using physically
eliminated read-disturb scheme and normally-off memory architecture,”
in 2015 IEEE International Solid-State Circuits Conference - (ISSCC)
Digest of Technical Papers, 2015, pp. 1–3.

[8] R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K. Tsutsui,
J. Javanifard, K. Tedrow, T. Tsushima, Y. Shibahara, and G. Hush, “19.7
a 16gb reram with 200mb/s write and 1gb/s read in 27nm technology,”
in 2014 IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2014, pp. 338–339.

[9] Intel. (2015, Jul.) Intel and micron produce breakthrough memory tech-
nology. [Online]. Available: https://newsroom.intel.com/news-releases/
intel-and-micron-produce-breakthrough-memory-technology/

[10] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren,
“Dudetm: Building durable transactions with decoupling for persistent
memory,” in International Conference on Architectural Support for
Programming Languages and Operating Systems - ASPLOS, vol. Part
F127193, 2017, pp. 329–343.



[11] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “Atom: Atomic dura-
bility in non-volatile memory through hardware logging,” in 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2017, pp. 361–372.

[12] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutiu, “Thynvm:
Enabling software-transparent crash consistency in persistent memory
systems,” in 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2015, pp. 672–685.

[13] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A
flexible and fast software supported hardware logging approach for
nvm,” in 2017 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2017, pp. 178–190.

[14] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” SIGARCH Comput. Archit. News, vol. 39, no. 1,
p. 91–104, mar 2011.

[15] K. Kruger, R. Pannain, and R. Azevedo, “Donuts: An efficient method
for checkpointing in non-volatile memories,” Concurrency and Compu-
tation: Practice and Experience, p. e7574, 2022.

[16] Y. Ni, J. Zhao, H. Litz, D. Bittman, and E. Miller, “Ssp: Eliminating
redundantwrites in failure-atomic nvrams via shadow sub-paging,” in
Proceedings of the Annual International Symposium on Microarchitec-
ture, MICRO, 2019, pp. 836–848.

[17] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: the
terasys massively parallel pim array,” Computer, vol. 28, no. 4, pp. 23–
31, 1995.

[18] S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna, and O. Mutlu,
“Processing-in-memory: A workload-driven perspective,” IBM Journal
of Research and Development, vol. 63, no. 6, pp. 3:1–3:19, 2019.

[19] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu,
“Low-cost inter-linked subarrays (lisa): Enabling fast inter-subarray data
movement in dram,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2016, pp. 568–580.

[20] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute caches,” in 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2017, pp. 481–492.

[21] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in emerg-
ing non-volatile memories,” in 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC), 2016, pp. 1–6.

[22] S. Angizi, Z. He, and D. Fan, “Pima-logic: A novel processing-
in-memory architecture for highly flexible and energy-efficient logic
computation,” in 2018 55th ACM/ESDA/IEEE Design Automation Con-
ference (DAC), 2018, pp. 1–6.

[23] S. Angizi, Z. He, A. S. Rakin, and D. Fan, “Cmp-pim: An energy-
efficient comparator-based processing-in-memory neural network accel-
erator,” in Proceedings of the 55th Annual Design Automation Confer-
ence, ser. DAC ’18. New York, NY, USA: Association for Computing
Machinery, 2018.

[24] S. Angizi, J. Sun, W. Zhang, and D. Fan, “Aligns: A processing-in-
memory accelerator for dna short read alignment leveraging sot-mram,”
in Proceedings of the 56th Annual Design Automation Conference 2019,
ser. DAC ’19. New York, NY, USA: Association for Computing
Machinery, 2019.

[25] S. Hamdioui, L. Xie, H. A. D. Nguyen, M. Taouil, K. Bertels, H. Cor-
poraal, H. Jiao, F. Catthoor, D. Wouters, L. Eike, and J. van Lun-
teren, “Memristor based computation-in-memory architecture for data-
intensive applications,” in Proceedings of the 2015 Design, Automation
& Test in Europe Conference & Exhibition, ser. DATE ’15. San Jose,
CA, USA: EDA Consortium, 2015, p. 1718–1725.

[26] P.-E. Gaillardon, L. Amarú, A. Siemon, E. Linn, R. Waser, A. Chat-
topadhyay, and G. De Micheli, “The programmable logic-in-memory
(plim) computer,” in Proceedings of the 2016 Conference on Design,
Automation & Test in Europe, ser. DATE ’16. San Jose, CA, USA:
EDA Consortium, 2016, p. 427–432.

[27] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa:
A dram-based reconfigurable in-situ accelerator,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-50 ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 288–301.

[28] Z. Wang, C.-H. Choo, M. A. Kozuch, T. C. Mowry, G. Pekhimenko,
V. Seshadri, and D. Skarlatos, “Nvoverlay: Enabling efficient and
scalable high-frequency snapshotting to nvm,” in 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA),
2021, pp. 498–511.

[29] L. Pentecost, A. Hankin, M. Donato, M. Hempstead, G.-Y. Wei, and
D. Brooks, “Nvmexplorer: A framework for cross-stack comparisons of
embedded non-volatile memories,” in 2022 IEEE International Sympo-
sium on High-Performance Computer Architecture, 2022, pp. 938–956.

[30] Y. Lu, J. Shu, and L. Sun, “Blurred persistence in transactional persistent
memory,” in 2015 31st Symposium on Mass Storage Systems and
Technologies (MSST), 2015, pp. 1–13.

[31] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Dhtm: Durable
hardware transactional memory,” in Proceedings of the 45th Annual
International Symposium on Computer Architecture, ser. ISCA ’18.
IEEE Press, 2018, p. 452–465.

[32] Y. Lu, J. Shu, L. Sun, and O. Mutlu, “Loose-ordering consistency for
persistent memory,” in 2014 IEEE 32nd International Conference on
Computer Design (ICCD), 2014, pp. 216–223.

[33] J. Jeong, C. Park, J. Huh, and S. Maeng, “Efficient hardware-assisted
logging with asynchronous and direct-update for persistent memory,” in
Proceedings of the Annual International Symposium on Microarchitec-
ture, MICRO, vol. 2018-October, 2018, pp. 520–532.

[34] E. Giles, K. Doshi, and P. Varman, “Softwrap: A lightweight framework
for transactional support of storage class memory,” in IEEE Symposium
on Mass Storage Systems and Technologies, vol. 2015-August, 2015.

[35] K. Doshi, E. Giles, and P. Varman, “Atomic persistence for scm with a
non-intrusive backend controller,” in International Symposium on High-
Performance Computer Architecture, vol. 2016-April, 2016, pp. 77–89.

[36] A. Kolli, S. Pelley, A. Saidi, P. Chen, and T. Wenisch, “High-
performance transactions for persistent memories,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems - ASPLOS, vol. 02-06-April-2016, 2016, pp. 399–
411.

[37] M. Ogleari, E. Miller, and J. Zhao, “Steal but no force: Efficient
hardware undo+redo logging for persistent memory systems,” in Inter-
national Symposium on High-Performance Computer Architecture, vol.
2018-Feb, 2018, pp. 336–349.

[38] X. Wei, D. Feng, W. Tong, J. Liu, and L. Ye, “Morlog: Morphable
hardware logging for atomic persistence in non-volatile main memory,”
in 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020, pp. 610–623.

[39] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent memory,”
in Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, ser. SOSP ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 133–146.

[40] Q. Hu, J. Ren, A. Badam, J. Shu, and T. Moscibroda, “Log-structured
non-volatile main memory,” in Proceedings of the 2017 USENIX Con-
ference on Usenix Annual Technical Conference, ser. USENIX ATC ’17.
USA: USENIX Association, 2017, p. 703–717.

[41] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson, “Nv-heaps: Making persistent objects fast and
safe with next-generation, non-volatile memories,” SIGARCH Comput.
Archit. News, vol. 39, no. 1, p. 105–118, Mar. 2011.

[42] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
locks for non-volatile memory consistency,” SIGPLAN Not., vol. 49,
no. 10, p. 433–452, Oct. 2014.

[43] T. C.-H. Hsu, H. Brügner, I. Roy, K. Keeton, and P. Eugster, “Nvthreads:
Practical persistence for multi-threaded applications,” in Proceedings of
the Twelfth European Conference on Computer Systems, ser. EuroSys
’17. New York, NY, USA: Association for Computing Machinery,
2017, p. 468–482.

[44] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen, and
T. F. Wenisch, “Persistency for synchronization-free regions,” SIGPLAN
Not., vol. 53, no. 4, p. 46–61, Jun. 2018.

[45] J. Gu, Q. Yu, X. Wang, Z. Wang, B. Zang, H. Guan, and H. Chen,
“Pisces: A scalable and efficient persistent transactional memory,” in
Proceedings of the 2019 USENIX Conference on Usenix Annual Tech-
nical Conference, ser. USENIX ATC ’19. USA: USENIX Association,
2019, p. 913–928.

[46] R. M. Krishnan, J. Kim, A. Mathew, X. Fu, A. Demeri, C. Min, and
S. Kannan, “Durable transactional memory can scale with timestone,”
in Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ser. ASPLOS ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 335–349.


