
Performance Modeling and Estimation of a
Configurable Output Stationary Neural Network

Accelerator

Ali Oudrhiri∗†, Emilien Taly∗‡, Nathan Bain∗‡, Alix Munier†, Roberto Guizzetti∗, Pascal Urard∗
∗STMicroelectronics, Crolles, France

†Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
‡Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA, Grenoble, France

Abstract—Neural network accelerators are designed to process
Neural Networks (NN) optimizing three Key Performance Indi-
cators (KPIs): latency, power, and chip area. This work is based
on the study of Gemini, an industrial prototype near memory
computing inference accelerator designed using a high-level
synthesis technique. Gemini is an output stationary configurable
accelerator that achieves its performance based on two structural
parameters. The measurement of the KPIs requires simulations
that are time-consuming and resource-intensive.

This paper presents a high-level practical estimator that
can instantly predict the KPIs depending on the NN and the
Gemini configuration. The latency is accurately derived using
an analytical model based on the architecture, the operators
scheduling and the NN characteristics. The power and the chip
area are computed analytically and the models are calibrated
using simulations. Finally, we show how to use the estimator to
derive Pareto optima for choosing the best Gemini configurations
for a VGG-like NN.

Index Terms—Neural network accelerator, output stationary,
estimation, latency, power, area.

I. INTRODUCTION

Deep Neural Networks (NN) have become incredibly popu-

lar [1]. We can find NN-based solutions in every field, which

led it to become a field on its own. The principle behind NNs

is far from being new. However, they are recently thriving due

to hardware progress [2]. NNs require a tremendous computa-

tional complexity which was not available a few decades ago.

CPUs, FPGAs and especially GPUs participated in the recent

resurgence of NNs as they overcame this computational need

[1]. However, NN Application-Specific Integrated Circuits

(ASIC) accelerators become the NN hardware best candidates.

These chips dedicated to NN processing are especially advan-

tageous for inference. They can further enhance latency while

having a small area and low power consumption. NNs present

various structures and have different hardware requirements

[2]: some applications need very low latency chips, such as

cloud computing, while others require low power and small

area, such as the edge computing market. Then, for each

application, the designer has to always find a compromise

between the 3 KPIs: latency, chip area and, power.

Gemini is designed as an industrial Near Memory Comput-

ing (NMC) solution to meet this challenge for the inference

(all the NN weights are precalculated). It supports feed for-

ward NNs (convolution layers, depthwise, pooling, and Fully

Connected (FC)). The architecture of Gemini was primarily

designed to be streamlined and highly configurable, facilitating

effortless adaptation to various applications. Therefore, achiev-

ing pure performance on a specific NN was not the objective.

Gemini is a configurable output stationary NN accelerator [3]

with mainly two structural architectural parameters. Chip area,

latency, and power consumption depend on both the NN to be

used and the two architectural parameters. The configurability

of Gemini allows it to adapt to the NN structure.

Choosing the best configuration according to the NN for

Gemini is too time-consuming. There are around 1000 possible

Gemini configurations. For a fixed NN, measuring the KPIs

requires simulating the NN execution. It cannot be done for

all the configurations in a reasonable time. However, using

accurate KPIs models, one could rapidly estimate all the

possible configurations for a fixed NN. Thus, the challenge

lays in obtaining the best KPIs estimation depending on the

NN and the two structural parameters. In this article, we

consider only the scenario where the entire NN can fit into

on-chip RAM. Consequently, only the accelerator’s perfor-

mance will be investigated. Considerations regarding off-chip

communications are not taken into account since they are not

influenced by the choice of the Gemini configuration.

A. Related works

There is a large research community working on NNs accel-

erators. Several surveys list the trends and the performances

of state-of-the-art accelerators [3]–[5]. The accelerators’ KPIs

are usually directly measured on the system for specific NNs

without any need for high-level KPIs estimations. Another

important research area is the one dealing with the design

space exploration of accelerators (generally using FPGAs) [6]–

[10]. Their objective is to find the best architectural parameters

according to KPIs. They use KPIs models and optimizing

algorithms to find the best design solutions.

Most of the authors evaluate the latency using analytical

formulas based on operations scheduling, accelerator archi-

tecture, and NN parameters [11], [12]. For example, Erdem et

al. [12] evaluate the latency of the computation according to

channel and kernel parallelizations.

For consumption, the strategies are often based on the power

estimation of components [8], [13], [14]: for example, Wu

et al. [14] developed Accelergy, a tool that evaluates the

energy of different architectures accelerators. Firstly, a de-

signer describes the architecture with compound components

characterized by primitives components for which the power

is known; RAMs power is evaluated with CACTI [15] and

other primitives such as Multiplications And Accumulations

(MACs) are given by libraries. Secondly, the designer lists

the actions of each component and their use rate. Accelergy

estimates the total energy by combining all these data. Zhao et

al. [8] also evaluate the consumption by listing the accelerator

components but with more simplified energy models. They use

also CACTI for RAMs power estimation and they consider

registers, MACs, and communication networks for the other

components.

Concerning the chip area, Shahshahani et al. [16] rely on

machine learning models to predict it. The main drawback

of this method is its lack of interpretability. For instance, the

impact of each resource is difficult to estimate. Wu et al. [17]

and Tang et al. [13] simply consider the area contribution of

each component to evaluate the chip area.

B. Contributions

This paper presents a method to estimate KPIs of an NN

output stationary accelerator based on its configuration and

NN parameters. The study aims to provide insights into the

performance metrics without optimizing the architecture.

The proposed estimation methodology can be utilized by

anyone using output stationary accelerator architectures. This

is due to the fact that the estimation methods rely on principles

inherent to this type of architectures, which are universal

across all accelerators classified as such.

In Gemini, the latency is estimated analytically depending

on the architecture, the operators scheduling, and the NN

parameters. This estimation comes from the predictability and

the regularity of the operations schedule.

In this paper, we choose to model the power rather than the

energy. The energy is impacted by the power of the system

as well as its latency. Considering then the energy is less

efficient when dealing with trade-offs between consumption

and speed (the energy combines both of them). The power

will be split into leakage and dynamic power. The leakage is

the power dissipated when the device is powered up but the

gates are not toggling; it does not depend on the inputs. The

dynamic one is the power dissipated when the gates switch

their states; it depends on the inputs. Splitting the power

allows us to estimate the power as a function of the clock

frequency because the dynamic power scales linearly with the

clock frequency while the leakage remains constant [18]. This

statement holds true since we are operating with a constant

voltage VDD. Below the maximum frequency (chosen during

the synthesis), there is no requirement to adjust VDD in order

to achieve the desired frequencies.

The power consumption of Gemini cannot be measured using

tools such as Accelergy [14]. Indeed, the computing part of

Gemini is designed using High-Level Synthesis (HLS); the

number, the type and the use rate of components are then

difficult to predict because operators schedule and optimiza-

tions (such as resource sharing) depend on the configurations.

However, we assume that main compound operators such as

registers, MACs or multiplexers must be synthesized during

the HLS. A power model for Gemini is then exhibited based

on a linear equation of the complexity of main operators

and calibrated through simulations of NNs executions. An

advantageous characteristic of this model resides in its inher-

ent simplicity, as it necessitates a minimal quantity of data

regarding the architecture and the NN (accessible from a high

level of abstraction) for its effective utilization. Conversely,

this model also possesses the advantage of being explainable.

The power estimator is based on gate-level simulations, which

is sufficient to have accurate power values to compare several

configurations.

Finally, the chip area will also be modeled with the area

contribution of main operators multiplied by constants.

To evaluate the estimator accuracy, it is chosen to consider

the Root Mean Square Error (RMSE). It has the advantage

to be homogenous to the modeled parameter. The estimated

RMSE for area and leakage is 0.005 mm² and 0.57 μW,

respectively. The latency and power models of an NN are

derived from the models of its individual constituent lay-

ers, encompassing all potential parameters. Therefore, these

models are validated and universally applicable to any feed-

forward NN. Latency is generally estimated with an error

of less than 10 cycles, and dynamic power with a RMSE

of less than 20 μW. We illustrate our results on a VGG-

like NN, as presented in Fig.1, which is inspired by VGG-

16 [19]. This network offers the advantage of encompassing

diverse NN layer types and, notably, is extensively employed

for evaluating NN accelerator performance [8], [20].

3x
3x

4

2x
2x

4
3x

3x
8

3x
3x

8
2x

2x
8

3x
3x

16
3x

3x
16

16
38

4x
32

32
x3

2
32

x1

VG
G

-li
ke

12
8x

12
8x

1

3x
3x

4

Convolution
filters

Fully
connected

Maxpool
window

Fig. 1: VGG-like network structure

This paper is organized as follows. Section II presents the

configurable architecture of Gemini. Section III exposes the

simulation environment used to gather data used in determin-

ing KPIs model. Section IV details the estimation model of

the KPIs as well as its accuracy. Section V illustrates how the

configuration can be chosen once the performances have been

estimated. Finally, the conclusion is made in section VI.

II. GEMINI CONFIGURABLE ARCHITECTURE

In this section, we start by presenting the two structural

parameters of Gemini, then the architecture of the accelerator

will be described in a bottom-up fashion from the processing

elements to the whole accelerator.

A. Presentation of Gemini structural parameters

Gemini is composed of a Tensor Processing Unit (TPU)

and two SRAM modules: the features maps (fmaps) RAM and

the weights RAM. The TPU contains the block in charge of

calculations called the processing elements (PEs) array. There

are NPE parallel PEs organized in 2D (WPAR,MPAR)
with NPE = WPAR × MPAR. These two structural

parameters are configurable before the logic synthesis. They

size all the designs from the PEs array to top-level RAMs and

they fix the scheduling of the operations. They were introduced

to optimize the convolutions processing. WPAR stands for

width parallelization of the output feature map (ofmap) and

MPAR is the filter parallelization (since the number of filters

is usually called M in literature [21]). Fig.2 illustrates the

notations.

PEs array: (3,2)

WPAR = 3

MPAR = 2
4 x 2D OFMAPsIFMAP

Number of filters (M): 4

Fig. 2: NPE organization for convolution

Ifmaps mixer

PEs ArrayStoring stage

Weights mixer

TPU

Weights RAM

Fig. 3: Accelerator architecture

B. TPU architecture

The TPU architecture is composed of the PEs array, the

input mixers and the storing stage. Fig.3 shows the TPU blocks

in the top-level architecture.

The processing elements array is composed of NPE PEs.

Concerning the architecture of one single processing element,

each PE has two pipelined stages: the first one is the output

computation stage performing MACs with fmaps pixels and

weights. The second one is the quantization stage. It is

triggered when ofmaps pixels are calculated (when all the

MACs are performed). Its role is to put the ofmaps pixels

in the desired range of quantization by multiplying them by a

scaling factor and taking only fmap pixels bits from the most

significant bits. The quantization stage always takes 5 clock

cycles.

PEs are organized following an output stationary dataflow,

each processor then computes an ofmap pixel. The partial sum

contributing to the output is stored in the accumulator (register)

of each PE when new fmaps and weights are broadcasted to

the PEs every cycle. This paradigm is described in [3] and

used by several accelerators such as [22] or [23].

The mixers are combinational blocks that take as input a

disordered dataset and output the sorted data. The input mixers

are the ifmaps mixer and the weights one.

Finally, the storing stage is located at the output of PEs

array. It eliminates some useless PEs computations that should

not be written in the fmaps RAM. For convolutions, the PEs

array calculates ofmaps pixels corresponding to horizontal

padding and strides even if they are not necessary for the

ofmap (they are eliminated by the storing stage). A design

choice allowing a few useless operations done by PEs was

made to simplify the mixers and to optimize the power and

area.

The storing stage also writes the quantized outputs inside the

fmaps RAM in the correct order. This function is mapped by

a mixer. This stage is pipelined with the PEs.

Ultimately, abstracting from Gemini-specific characteristics,

the architecture remains consistent across any output stationary

accelerator. In all such accelerators, the PEs compute paral-

lelized outputs, necessitating mixers and a storing stage to

facilitate data transfer between RAMs and PEs for read and

write operations.

C. Layers execution scheduling

The TPU executes the NN layer by layer. It supports con-

volutions and FC layers with different operations scheduling.

For convolutions, for each ofmap in 2D, WPAR pixels

are calculated simultaneously. This paradigm is duplicated in

MPAR to process 2D ofmaps simultaneously (as a reminder

M is the number of filters). This parallelization is illustrated

in Fig.2 where WPAR and MPAR are respectively equal to

3 and 2.

At every cycle, one filter weight is selected by the weights
mixer and broadcasted to all PEs. It is then multiplied by

NPE fmaps selected by the ifmap mixer (each PE receives

a different fmap pixel) and accumulated inside the PE reg-

ister. When all filter MACs are done, the NPE outputs are

quantized and then processed by the storing stage.

For FC layers, NPE from Nout output neurons are pro-

cessed simultaneously. Nout are the FC ofmaps flattened. At

every cycle, one input neuron from Nin (Nin are the FC

ifmaps flattened) is broadcasted to the PEs by the ifmap mixer

and multiplied with NPE weights (chosen by the weights
mixer) and accumulated inside the PE accumulator every

cycle. Then, as it is done for convolution, the NPE quantized

outputs go into the storing stage that writes them inside the

fmap RAM.

Depthwise layers have the same scheduling as convolutions.

Pooling layers follow also the same scheduling replacing the

weight multiplication by the pooling operation.

D. Top-level architecture

The weights RAM contains the NN weights as well as

information on the network (such as layer types) in a com-

pacted way. The fmaps RAM contains the feature map pixels:

before the beginning of the executions, this RAM contains

ifmaps pixels; during the executions, intermediary fmaps are

also stored inside this RAM overwriting non-meaningful data,

and finally, at the end of the execution, it contains the final

ofmaps.

Both fmaps and weights SRAMs are sized according to the

NN to be supported and according to (WPAR,MPAR).
The fmaps RAM is composed of WPAR memory banks of

MPAR× fmapbits width for each bank. The weights RAM

is composed of one memory bank of NPE × weighstbits.

The number of bits used for the fmaps and weights pixels are

respectively fmapbits and weightsbits. As a reminder, in the

scope of this study, it is required that the entire NN fits into the

on-chip RAMs, including weights and intermediate ifmaps.

III. SIMULATION ENVIRONMENT

The objective is to gather data on KPIs (latency,

area, and power) via simulations for several NNs and

(WPAR,MPAR) couples. These data will be used to build

an estimator based on analytical models predicting those

indicators. For our utilization, both WPAR and MPAR
vary from 2 to 32 (NPE could then vary from 4 to 1024).

Each (WPAR,MPAR) couple is called a configuration. As

aforementioned, it was chosen to perform simulations at the

gate level stage directly before the P&R.

We choose to work with 8 bits for both fmapbits and

weightsbits since it is the most used quantization mode.

The SRAM capacity is fixed, only the aspect ratio between

RAMs width and depth undergoes variation across different

configurations.

The technology chosen is CMOSC40. The simulation environ-

ment is summarized in Fig.4.

 C++
Description

RTL

GATES

C++ Simulation

GATES Simulation
 with activity

RAMs choice

Dynamic power
 consumption

Neural network

Neural network

Latency

Area and leakage

 HLS
(Catapult C)

Logic Synthesis
 (DCSHELL)

d

WPAR/MPAR

Fig. 4: Simulation environment

The design of the TPU is described in C++ and the HLS

is performed by SIEMENS CATAPULT®. The TPU execution

is described using loops ensuring that one loop execution in

C++ corresponds to one clock cycle. Then the latency of a NN

processing can already be measured at this level by counting

the number of loops.

Once the TPU RTL is obtained for each configuration, the

top level of the accelerator is built instantiating the TPU and

its corresponding RAMs. If several cuts are possible for one

RAM, we choose the option giving the smallest area. Once the

full RTL is ready (including TPU and RAMs), we operate the

logic synthesis using the SYNOPSYS DCSHELL® tool with

the same constraints and corners for all configurations: the

synthesis is done at 200 MHz, 1 V, and 125 °C for the slowest

corner. This corner represents the worst case in terms of

timing. The libraries used are LVT (low threshold voltage) and

RVT (regular threshold voltage) in CMOSC40. Finally, when

the gate netlist is ready, area and leakage power estimations

are given by DCSHELL® without any simulation as they do

not depend on the NN to be computed.

Latency and dynamic power estimations can be obtained

by doing gate-level simulations: they are performed using

CADENCE XCELIUM® environment. The simulations are run

at 1 MHz for the typical corner at 1.1 V and 25°C. The

toggle rate is then exploited by SYNOPSYS PRIMEPOWER®

to evaluate the average dynamic power on the whole NN

execution.

For gate-level simulations, we choose wisely which NN

must be run to extrapolate the result of simulations into other

NNs. For that, we run simulations on single-layer NNs varying

all the possible parameters to cover all cases. The performance

of any multi-layer NN is then obtained from the information

of single-layer ones. For FC layers, Nin and Nout are varying.

For convolutions, we vary the number of filters, filter sizes, 2D

ifmap sizes, strides, and padding. For depthwise and pooling

layers, different ifmap sizes, strides and, padding are chosen.

A total of 93 single-layer NNs are considered. Concerning the

sweep of (WPAR,MPAR), we limit the simulations to 210

different configurations.

To offer a time estimate for assembling all this data, on

average, the combined duration of HLS and logic synthesis

is approximately one hour, and NN execution within an op-

timized simulation environment takes around 3 minutes. Data

collection is a one-time process, necessitating repetition solely

if the environment undergoes changes. For instance, opting

for a different technology or quantization would mandate re-

performing this step.

IV. KEY PERFORMANCE INDICATORS ESTIMATION

The objective of this section is to estimate the performances

of the accelerator according to its configurations for each NN.

Those estimations are done thanks to an analytical model

based on simulations discussed in section III. This model gives

latency, area, leakage and, dynamic power.

The modeling of each KPI will be detailed.

A. Latency modeling

Latency in cycles is obtained at the C++ description level.

As the design is fully pipelined, the difference between the

number of cycles given by the C++ execution and the one

obtained after gates simulations corresponds only to the ramp-

up of the pipeline. This was observed for several NNs. As the

NN’s layers are processed serially and separately, the latency

of the neural network execution corresponds to the sum of

the layers’ latencies added to a constant overhead independent

from the NN (it includes the pipeline ramp-up). For this work,

only the meaningful terms will be detailed. For example, the

bias cycles will be neglected.

The following paragraphs detail the latency modeling of each

layer type and the latency behavior of a NN of L layers.

1) Convolution latency
The execution of the convolution is fully predictive. It can

be computed based on the output stationary paradigm where

WPAR (among 2D ofmap pixels) pixels of MPAR filters

(among M filters) are processed simultaneously. The number

of 2D ofmap pixels calculated corresponds to the size of

the 2D ifmap excluding the vertical padding padv . This is

a consequence of the execution duration being unaffected by

the stride and the horizontal padding usage. Only the vertical

padding is impacting the number of pixels calculated. So the

number of 2D ofmap image pixels is W (H − (R − 1)padv),
with W and H the width and height of the ifmap and R the

height of the filter. Thus the number of cycles Ncycconv needed

to compute a convolution is:

Ncycconv =

⌈
W (H − (R− 1)padv)

WPAR

⌉⌈
M

MPAR

⌉
×Kc (1)

where Kc is the number of cycles required for one-pixel

computation. As stated in section II, 3 stages are pipelined for

the computation of one pixel; the latency of the full system

is then approximately the latency of the slowest stage. The

slowest one is the output computation stage of the PEs array.

Every cycle, one filter weight is read, so the number of cycles

needed to compute one pixel is Kc = S.R.C where S, R, and

C are respectively the filter width, height and, channels. The

latency of maxpool and depthwise layers are derived from the

same formula.

2) Fully connected latency
Concerning FC layers, Nout output neurons are processed

simultaneously by NPE processors. It takes Nin cycles to

process them; Nin is the number of input neurons. So the

latency Ncycfc of a FC is:

Ncycfc =

⌈
Nout

NPE

⌉
Nin

3) Estimator validation
Combining the last equations, the general shape of the

latency Lat of a NN of L+K layers follows Eq.2:

Lat =

L∑
l=1

(⌈ αl

MPAR

⌉
×
⌈

βl

WPAR

⌉
γl

)
+

K∑
l=1

⌈
δl

NPE

⌉
εl

(2)

with L the number of convolution layers, K the number of

fully connected layers and αl, βl, γl, δl, εl are constants

depending on the layer l type.

We deduce from Eq 2 that the latency is a decreasing curve

with NPE.

Given the predictive nature of the execution, there are only

few clock cycles difference (that can be calibrated) between

predictions and simulations across all conceivable layer types

and their associated parameters. Consequently, this character-

istic extends to multi-layer NNs as well. We illustrate this

result using the VGG-like network for MPAR = 8 shown in

Figure 5. This choice is made for the sake of clarity in the

curves, even though the observation remains consistent when

varying MPAR and WPAR. The estimation and simulation

curves are nearly indistinguishable.

Fig. 5: VGG-like estimated and simulated latencies.

B. Area and leakage modeling

In this paragraph, we will discuss the area and leakage

model for RAMs and TPU as well as the calibration of the

model by the identification of constants.

1) RAM modules area and leakage
RAM modules leakage and area are dependent on the

memory capacity chosen (total number of KBs). Even if

the organization of RAMs (width × depth) changes with

configurations, the difference of leakage and area is only

impacted by RAMs technology variation. Then RAM modules

area and leakage will be considered as constants and only the

TPU will be considered.

2) TPUs’ area and leakage modeling
a) TPU main operators’ complexities

Estimating the TPU power and area knowing only

(WPAR,MPAR) is challenging. The RTL is obtained by

HLS, so the tool can adapt the number and types of operators

and their scheduling to optimize the synthesis performance for

each configuration; HLS can then generate different netlists for

two close but different configurations.

It was decided to model the leakage and area with a linear

combination of the expected main operators’ complexities and

then identify the constants thanks to a linear regression (which

are different for area and leakage). These positive constants

(c0, c1, c2 and c3) encapsulate the consumption of primitives

operators. The compound operators taken into account are:

• Operators that do not depend on the configuration: the

term c0 corresponds to all the constant operators. As a

matter of example, there are all the registers and logic

units of finite state machines.

• PEs array input registers (fmaps and weights registers,

accumulators) and arithmetic logic units (MACs): all

these components scale with NPE. They will then be

modeled with c1 ×NPE.

• Mixers: there are 3 mixers in the circuit (ifmap, weights
and storing stage mixers) ensuring that the data is well

sorted at the input and output of PEs array and RAMs.

These mixers are mapped into shifters implemented with

multiplexers that have a complexity of N�log2 K� with

N is the total number of data sorted and K is the number

of possible shifts for each data. Mixers are then modeled

by: c2 ×NPE�log2 WPAR�.

Their power and area cannot be neglected especially for

a large NPE.

• Storing stage operators: they eliminate the non-useful pix-

els (due to stride or padding). They scale with WPAR.

They are modeled with c3 ×WPAR.

Area and leakage follow Eq.3 with different constants:

c0 + c1 ×NPE

+ c2 ×NPE�log2 WPAR�+ c3 ×WPAR
(3)

This modeling method can be adapted to any output sta-

tionary accelerator as the compound operators (except the

storing stage that was optimized for Gemini) are consistently

necessary: MACs and registers for computation and storage are

always synthesized along with mixers used for data transfer

from RAMs to PEs. Furthermore, the FSM operators are also

present in any design. If a user has a customized accelerator

with additional significant operators, their complexity can

be included in Equation 3 by adding the complexity of the

operators multiplied by a constant factor, which can also be

determined during regression.

b) Identification of constants and validation of area and
leakage models

The constants c0, c1, c2 and c3 are identified using the data-

set of 210 configurations. They are determined quasi-instantly

by linear regression optimizing the RMSE and the correlation

coefficient (R²). Figure 6 illustrates the modeling results for

TABLE I: Leakage and area estimation characteristics

MPAR = 5 configurations (chosen for clarity in the curves).

It is observed that the significant increases in leakage and area,

such as those observed at 40 and 80 NPEs, are accurately

captured by the modeling: they correspond to an increase

of the value of �log2 WPAR� (WPAR is a power of 2).

Table I displays the modeling results of all the 210 Gemini

configurations. The low RMSE validates the accuracy of the

estimation. The R² close to 1 confirms that our modeling with

Eq.3 is meaningful. The same approach can be applied in case

of changes in the number of bits (fmapbits or weightsbits)

or the process technology. Only the regression step needs to

be rerun, using the updated simulation data.

TPU LEAKAGE ESTIMATION for MPAR = 5
TPU LEAKAGE SIMULATION for MPAR = 5

TPU AREA ESTIMATION for MPAR = 5
TPU AREA SIMULATION for MPAR = 5

TPU LEAKAGE AND AREA ESTIMATIONVS SIMULATION
for MPAR = 5 configurations

Fig. 6: Area and leakage estimations and simulations.

C. Dynamic power modeling

This paragraph describes how the dynamic power of the

execution of a NN on Gemini can be evaluated for each

architecture configuration. The dynamic power is calculated

by summing the internal power (consumption due to the power

dissipation of the capacitance inside a standard cell) and the

switching one (dissipation of load capacitance) [24].

First, the RAMs dynamic power will be discussed, then the

TPU dynamic power for each layer type will be detailed. The

dynamic power of any NN can then be estimated by combining

the power consumption of its layers.

1) RAM modules’ dynamic power
For all NNs tested, the dynamic power of both RAMs

(fmaps and weights) remains almost constant while sweeping

(WPAR,MPAR). It is since for each RAM, the number of

KB is fixed for all configurations, thus the total amount of data

read is the same; only the RAM modules widths and depths

are changing affecting the number of read cycles and the size

of the buffer to be read: for example, several reading cycles

are needed when the RAM modules width is small while only

a few of them are needed to read the same memory amount

when the width is large.

Fig.7 shows the dynamic power of RAMs and TPU for the

VGG-like NN for the configurations MPAR = 8 (WPAR is

swept from 2 to 16). For this example, the SRAMs capacity

is 1.3 MB. For our study, we neglect the impact of RAMs as

they do not impact the configuration choice.

2) TPU dynamic power modeling
For estimating the dynamic power consumption of the

TPU, we employed the same compound operators discussed

in Section IV B. However, in this case, the constants ci in

Equation 3 should be functions dependent on the specific

NN parameters. It’s important to highlight that individual

models for each NN were not constructed by running separate

regressions. Instead, a dynamic power single model, valid for

all NNs, was developed through regression performed only

Dynamic power of VGG-like
for MPAR = 8 configurations

TPU dynamic power
RAMs dynamic power

NPE

po
w

er
 (

μW
/M

H
z)

Fig. 7: Power consumption of TPU and RAMs on VGG-like

once. This model incorporates data from all simulated NNs

and is universally applicable across all NNs.

The first statement is that the dynamic power of the TPU

is globally increasing with NPE for all the NNs tested (as

shown in Fig.7). Furthermore there are some local optimums

reached for some (WPAR,MPAR). They are the same for

all NNs tested but they change according to the architecture.

It means that they depend only on the architecture and not on

the NN. However, the power magnitude of those optimums

depends on the NN.

The identification of ci is different between convolutions and

fully connected layers as they have different parameters.

a) Convolution dynamic power
There are 5 different parameters characterizing convolu-

tions: ifmap 2D dimensions (W × H), filter dimensions

(S.R.C), number of filters (M), strides and, padding.

First of all, as was specified in II B, all the blocks except

the storing stage work, in the same way, considering different

strides or paddings. Then a low dynamic power dependency

on those parameters is expected. For the 210 configurations of

(WPAR,MPAR), we choose 6 different parameters NNs.

We run them with and without the padding to evaluate their

impact on the dynamic power. The RMSE is 2.94 μW for an

average of 157.2 μW.

Concerning the stride, we took one NN with a stride of 1x1

and another with 2x2. All the other parameters are the same.

The RMSE is 0.72 μW for an average of 155.6 μW.

Due to this low RMSE (compared to the average), it was

then decided to neglect the impact of stride and padding on

dynamic power consumption.

The number of filters M should also be neglected. Actually,

the mixers and PEs array are duplicated in MPAR; it means

that the execution is the same considering any number of filters

between 1 and MPAR; and when M > MPAR several same

executions are operated which is not affecting the average

dynamic power. Considering 3 different NNs, fixing all the

parameters except M (respectively set to 7, 14, 24), the RMSE

is: 6.04 μW for an average of 152.5 μW. This parameter can

also be neglected because of this low RMSE value.

The dynamic power is increasing with the 2D ifmap pixels

number (W ×H) before reaching a saturation level where the

dynamic power consumption is almost the same for all ifmap
2D pixels number.

As it was specified before, WPAR 2D pixels from the 2D

ofmap are processed simultaneously. Considering the padding
to simplify calculations, the number Nexec of executions to

calculate all the 2D ofmap pixels is the following:

Nexec =

⌈
W ×H

WPAR

⌉
=

⌊
W ×H

WPAR

⌋
+ r + o. (4)

with r equal to 0 when W×H
WPAR is an integer and 1 otherwise. o

corresponds to the few overhead cycles. They do not consume

a significant amount of power. The term
⌊

W×H
WPAR

⌋
corresponds

to executions where 100% of WPAR are working and r to

the execution where only a few of them are used (because

there are less than WPAR pixels to calculate). Thus, when

W × H is large (large 2D ifmap), Nexec is quasi equal to⌊
W×H
WPAR

⌋
. As the dynamic power is measured with an average

on all the convolution processing, the dynamic power will

then correspond to the power of the executions where all

WPAR are working (because it is repeated
⌊

W×H
WPAR

⌋
times).

It explains the power saturation when the ifmap is large enough

(number of pixels higher than 80). Fig.8 shows the dynamic

0 500 1000 1500 2000 2500 3000 3500
Ifmap pixels

25

50

75

100

125

150

175

200

225
D

yn
am

ic
 p

ow
er

 (
μW

/M
H

z)
TPU dynamic power according to 2D ifmap pixels number

Dynamic power 16 NPE (8,2)
Dynamic power 32 NPE (8,4)
Dynamic power 64 NPE (8,8)

Dynamic power 96 NPE (8,12)
Dynamic power 128 NPE (8,16)

Fig. 8: Power consumption of TPU sweeping 2D ifmap pixels

power of the TPU sweeping the number of the ifmap pixels for

some configurations of (WPAR,MPAR), all the other NN

parameters are the same. The saturation comes with relatively

small images for small WPARs; Nexec becomes quasi equal

to
⌊

W×H
WPAR

⌋
. For a large number of WPAR, the saturation

happens for bigger images (higher W ×H).

For the power modeling, it was decided to consider the

saturation by modeling the power of all ifmaps having more

than 80 pixels by the power of a 1024 pixels ifmap. Tested on

19 NNs with different ifmap sizes, the RMSE is 11.5 μW for

an average of 134 μW. This assumption is relevant because

the ifmaps used are usually in the range of saturation (even

for a large WPAR). For small images (below 80 2D pixels),

we have 2 models corresponding to ifmaps with respectively

16 and 36 pixels. The maximum RMSE is 10 μW.

Concerning the impact of filter dimensions, the dynamic

power is decreasing with the filter size (S × R × C). The

major impact is on the general slope. Fig.9 exhibits this

T
PU

 d
yn

am
ic

 p
ow

er
 (μ

W
/M

H
z)

N

TPU dynamic power for different filter dimensions for MPAR = 8

convolution with SRC = 16
convolution with SRC = 36
convolution with SRC = 64

Fig. 9: Power of convolution for different filters sizes

statement on 3 NNs having the same parameters except the

filter size. The dynamic power of convolutions is decreasing

with filter dimensions because, as one weight is processed each

cycle, the larger the filter dimensions, the higher the number

of accumulation cycles required before the 5 scaling factors

cycles. Thus on average, the 5 cycles of scaling (see section

II,B) do not have an impact on the overall power of big filters;

on the opposite, for small filters, the 5 cycles have more impact

because there are fewer accumulation cycles.

To model this behavior, we choose to make the function

multiplying NPE dependent on the filter dimensions as

it is the function affecting the slope. We estimated it for

different filter sizes and we generalize it with a regression (a

power function was chosen as it gives the lowest RMSE and

correlation coefficient). The model explained below was tested

on 5 NNs with different filter sizes for the 210 configurations:

the RMSE is 16 μW for an average of 152 μW.

Finally, Eq.5 models the dynamic power of convolution

layers Pc (as well as maxpool and depthwise layers):

Pc = c0 + c1 × S.R.Cc2 ×NPE

+ c3 ×NPE�log2 WPAR�+ c4 ×WPAR
(5)

ci were determined by linear regression. The maximum error

is theoretically lower than the sum of the errors of each

approximation. The error generated using Eq.3 is impacting

all the estimations.
b) Fully connected dynamic power

FC layers are characterized by Nin and Nout. Nout should

not impact drastically the power consumption because as the

architecture is output stationary, each PE calculates one Nout;⌈
Nout
NPE

⌉
executions are then needed to compute all the Nout.

The NPE processors work the same way even if Nout are

less than NPE. 4 NNs are run with the same Nin varying

Nout from 1 to 32. Only 5 μW of RMSE was observed (the

average dynamic consumption is 78 μW). The impact of Nout

is then neglected.

For our applications involving FC layers, the value of Nin

ranges from 25 to 500. The dynamic power model was

developed based on simulations that encompassed this en-

tire Nin range. As Nin increases, the dynamic power also

increases. Nevertheless, this upward trend in power becomes

less important as Nin reaches higher numerical values. It is

due to the increase of the number of accumulations leading

to higher nets activities. When Nin is already high, more

accumulations are not affecting drastically the activity, so the

dynamic power does not increase excessively. This behavior is

modeled with a logarithmic function. Eq.6 models FC layers

power consumption Pfc:

Pfc = c0 + (c1 + c2 × log(Nin))×NPE

+ c3 ×NPE�log(WPAR)�+ c4 ×WPAR
(6)

ci were determined by linear regression. Tested on 9 fully

connected networks with Nin varying from 25 to 500 for 210

configurations of (WPAR,MPAR), the RMSE is 12.3 μW

and the average is 110 μW.

c) L-layers NN dynamic power
Once the dynamic power is estimated for each type of layer,

the dynamic power PdynNN (f) of a NN composed of L
layers at the frequency f is calculated with the average power

of each layer weighted by its latency.

PdynNN (f) =

∑L
l=1 Latl × Pdynl × f∑L

l=1 Latl
(7)

Latl is the latency of the layer l calculated with Eq.2 and

Pdynl is the dynamic power calculated with Eq.5 or Eq.6

according to the layer type.

Since the model has been validated (with low RMSE) across

all layer types with all possible parameters, and considering

that the dynamic power of a multi-layer NN is a combination

of the individual layer powers, the model remains valid for

the entire NN as well. The model was subsequently tested

on multiple NNs, yielding low errors. For example, on the

VGG-like network (Fig.1) on 210 (WPAR,MPAR), the

RMSE is 16 μW for an average of 150.4 μW (11.6% of

error). While our power model exhibits a higher RMSE when

compared to alternative methods (such as [14]), it offers

the distinct advantage of simplicity. The model relies solely

on two structural parameters and raw information from NN

characteristics, accessible at a high-level design abstraction.

Despite the method’s slightly elevated RMSE, it remains suf-

ficiently low for effectively selecting the optimal configuration.

Consequently, it continues to serve as a valuable tool in

practical scenarios.

The estimation error arises from underestimating the influence

of structural parameters, which likely affect operators with

behaviors that are not consistently explainable (and thus not

incorporated into the model). For instance, the local minimum

at 80 in Figure 6 was excluded from the model (resulting in

estimation errors) due to a lack of complete understanding

(observed only for fixed MPAR at 8). This could potentially

be attributed to complex optimizations during High-Level

Synthesis, which involve dividing operators into multiple units

to allocate portions for non-concurrent tasks.

V. CONFIGURATION CHOICE

Some of the considered KPIs have antagonistic behaviors.

By increasing NPE, the latency decreases but the power

and area increase. To find the best trade-offs, we use Pareto

(4,2)

(4,4)

(4,8)

(8,22) (17,32)

0

2e5

4e5

6e5

8e5

10e5

12e5

14e5

16e5

0 200 400 600 800 1000

LA
TE

N
CY

 in
 cy

cl
es

POWER (μW/MHz)

VGG-like Pareto front: latency vs power

pareto front

Less optimal (WPAR,MPAR)

 con gurations

Fig. 10: VGG-like network sweet spots

fronts to determine the optimal architectures. Fig.10 shows

sweet spots for the VGG-like NN considering the latency and

power. The area is usually a specification, so only the points

below a certain area could be considered. For each point

of the curve, there are no other points that simultaneously

have lower power and latency. The final choice between

these (WPAR,MPAR) points is made according to the

application’s specifications.

VI. CONCLUSION

In this paper, we presented a practical and explainable

method to estimate three KPIs, latency, area, and power con-

sumption of Gemini, an output stationary NMC configurable

accelerator for NN inference. Its architecture can be easily

configured thanks to two parameters, WPAR and MPAR.

The KPIs estimations are specific to any feed-forward NN

specified as input of the estimator. They are accurate for all

the KPIs but the dynamic power. The error is small enough

to allow the user to determine the most accurate configuration

for their application (NN).

The KPI estimation method presented in this article is adapt-

able for utilization with any output stationary accelerator

(except few optimizations done for Gemini). Finally, this

method can be extended to applications based on the execution

of several NNs with different use rates.

REFERENCES

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553):436–444, 2015.

[2] Yann LeCun. 1.1 deep learning hardware: Past, present, and future. In
2019 IEEE International Solid- State Circuits Conference - (ISSCC),
pages 12–19, 2019.

[3] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient
processing of deep neural networks: A tutorial and survey. CoRR,
abs/1703.09039, 2017.

[4] Sunny Bodiwala and Nirali Nanavati. Efficient hardware implementa-
tions of deep neural networks: A survey. In 2020 Fourth International
Conference on Inventive Systems and Control (ICISC), pages 31–36,
2020.

[5] Lukas Sekanina. Neural architecture search and hardware accelerator
co-search: A survey. IEEE Access, 9:151337–151362, 2021.

[6] Rajesh Kedia, Shikha Goel, M. Balakrishnan, Kolin Paul, and Rijurekha
Sen. Design space exploration of fpga-based system with multiple dnn
accelerators. IEEE Embedded Systems Letters, 13(3):114–117, 2021.

[7] Nermine Ali, Jean-Marc Philippe, Benoit Tain, and Philippe Coussy.
Exploration and generation of efficient fpga-based deep neural network
accelerators. In 2021 IEEE Workshop on Signal Processing Systems
(SiPS), pages 123–128, 2021.

[8] Zhongyuan Zhao, Hyoukjun Kwon, Sachit Kuhar, Weiguang Sheng,
Zhigang Mao, and Tushar Krishna. mrna: Enabling efficient mapping
space exploration for a reconfiguration neural accelerator. In 2019
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 282–292, 2019.

[9] Nicolas Bohm Agostini, Shi Dong, Elmira Karimi, Marti Torrents La-
puerta, José Cano, José L. Abellán, and David Kaeli. Design space
exploration of accelerators and end-to-end dnn evaluation with tflite-soc.
In 2020 IEEE 32nd International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD), pages 10–19, 2020.

[10] Jude Haris, Perry Gibson, José Cano, Nicolas Bohm Agostini, and
David R. Kaeli. Secda: Efficient hardware/software co-design of fpga-
based dnn accelerators for edge inference. 2021 IEEE 33rd International
Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), pages 33–43, 2021.

[11] Linyan Mei, Huichu Liu, Tony Wu, H. Ekin Sumbul, Marian Verhelst,
and Edith Beigne. A uniform latency model for dnn accelerators with
diverse architectures and dataflows. In 2022 Design, Automation,Test in
Europe Conference, Exhibition (DATE), pages 220–225, 2022.

[12] Ahmet Erdem, Cristina Silvano, Thomas Boesch, Andrea C. Ornstein,
Surinder pal Singh, and Giuseppe S. Desoli. Runtime design space
exploration and mapping of dcnns for the ultra-low-power orlando soc.
ACM Transactions on Architecture and Code Optimization (TACO), 17:1
– 25, 2020.

[13] Tianqi Tang, Sheng Li, Lifeng Nai, Norm Jouppi, and Yuan Xie.
Neurometer: An integrated power, area, and timing modeling framework
for machine learning accelerators industry track paper. In 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 841–853, 2021.

[14] Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze. Accelergy:
An architecture-level energy estimation methodology for accelerator
designs. In 2019 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 1–8, 2019.

[15] Rajeev Balasubramonian, Andrew B. Kahng, Naveen Muralimanohar,
Ali Shafiee, and Vaishnav Srinivas. Cacti 7: New tools for interconnect
exploration in innovative off-chip memories. ACM Trans. Archit. Code
Optim., 14(2), jun 2017.

[16] Masoud Shahshahani and Dinesh Bhatia. Ppa based cnn architecture
explorer. In 2022 IEEE 13th Latin America Symposium on Circuits and
System (LASCAS), pages 01–04, 2022.

[17] Yannan Nellie Wu, Vivienne Sze, and Joel S. Emer. An architecture-level
energy and area estimator for processing-in-memory accelerator designs.
In 2020 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 116–118, 2020.

[18] Tarek Darwish and Magdy Bayoumi. 5 - trends in low-power vlsi design.
In WAI-KAI CHEN, editor, The Electrical Engineering Handbook,
pages 263–280. Academic Press, Burlington, 2005.

[19] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv 1409.1556, 09 2014.

[20] Grant Brown, Valerio Tenace, and Pierre-Emmanuel Gaillardon. Nemo-
cnn: An efficient near-memory accelerator for convolutional neural
networks. In 2021 IEEE 32nd International Conference on Application-
specific Systems, Architectures and Processors (ASAP), pages 57–60,
2021.

[21] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss
v2: A flexible accelerator for emerging deep neural networks on mobile
devices. IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, 9(2):292–308, 2019.

[22] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Tao Luo,
Xiaobing Feng, Yunji Chen, and Olivier Temam. Shidiannao. ACM
SIGARCH Computer Architecture News, 43:92–104, 06 2015.

[23] Bert Moons and Marian Verhelst. An energy-efficient precision-scalable
convnet processor in a 40-nm cmos. IEEE Journal of Solid-State
Circuits, PP:1–12, 12 2016.

[24] Z Pei. Modeling power terminology, 2015.
https://blogs.cuit.columbia.edu/zp2130/modeling power terminology/
(accessed Apr.4,2023).

