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Abstract— The goal of sharding in a contemporary Blockchain
system is to increase throughput linearly in proportion to the
number of shards. This is achieved in practice by one-to-one
mapping of each transaction block to a shard, with the assumption
that each shard is ‘perfect’ and hence cannot fail. The notion of
perfection is achieved by forming shards that have negligible
failure probabilities. This contemporary approach to blockchain
sharding has two drawbacks: (1) shards tend to be large in size to
maintain low failure probability, which can negatively affect
performance and throughput; (2) the ‘perfect’ shard assumption
can easily be breached if any shard becomes faulty, which can fail
an entire blockchain system because there is no fault-detection
mechanism during transaction-processing (i.e., faulty blocks
approved by faulty shards may only be detected after being
appended to the blockchain). To overcome these drawbacks, this
paper presents a multi-round consensus scheme which adopts one-
to-many mapping of a transaction block to k shards, followed by a
second consensus round among the k shard leaders (inter-shard
consensus) in an epoch to validate and commit a transaction block
with finality. In return, the following are achieved: (1) possibility
of increased fault tolerance, despite using smaller shard sizes,
because the collective failure probability of a group of £ small
shards can be much lower than the failure probability of an
individual larger shard with the proper selection of the values of &
and other parameters; (2) capability of faulty block detection with
high probability during transaction processing; and (3) relaxation
of the ‘perfect’ shard assumption so that the system can be tolerant
to more faulty shards and still maintain safety. Detailed theoretical
analyses are presented which demonstrate the benefits of such a
multi-round block validation approach over contemporary
approaches in terms of achieving better fault tolerance without
compromising on throughput.

Keywords— Blockchain, Sharding, Multi-Round Consensus,
Faulty block detection, Throughput, Transaction mapping,
Hierarchical blockchain, Byzantine Fault Tolerance.

[.  INTRODUCTION

Sharding is a prevalent approach in blockchain systems to
enhance scalability and throughput. Unlike in contemporary
blockchain systems where all validators (i.e., nodes that
participate in transaction processing to maintain a blockchain)
process a single set of transactions (a transaction block or a
block) in every epoch (round of processing), sharding introduces
concurrency by splitting validators into different groups (shards)
such that each shard processes a different set of transactions.
This approach allows a system to increase its throughput linearly
in proportion to the number of shards, where throughput is
defined as the number of blocks processed per epoch time.
Sharding is hence desirable because a system comprising of 7
shards can scale and increase its throughput by a factor of 7,
unlike contemporary systems such as Bitcoin [1] which
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maintains a constant throughput even when more resources are
added.

However, trade-offs need to be made between fault tolerance
and performance. Sharding usually lowers the collective fault
tolerance of a blockchain system for performance gains. To curb
this decrease in fault tolerance, sharded systems in general are
built on strict assumptions and conservative parameters that may
not be very practical in the real world.

One such major assumption in contemporary sharded
systems is that shards are ‘perfect’ and always process
transactions correctly during an epoch. These systems
(especially public blockchains) generally use the random
sampling technique to attempt to distribute faulty (Byzantine)
nodes uniformly among equal-sized shards. An even distribution
of faulty nodes is desired so that the majority of nodes in any
shard is non-faulty with high probability. Random sampling,
when unbiased, is nondeterministic and is the preferred way to
form shards with very low (negligible) probability of failure [2],
[3]. Shards having negligible failure probability can then be
considered as ‘perfect’. Section II further elaborates on random
sampling.

To obtain ‘perfect’ shards with low failure probability,
shards need to be large (e.g., OmniLedger uses shard size of
around 700 [4] ). However, the use of large shard sizes usually
impacts performance negatively and increases transaction
latency, especially in shards that use classical Byzantine Fault
Tolerance (BFT) consensus which has quadratic communication
cost [5], [6]. Use of larger shards also results in lesser number of
shards in a system and hence less throughput, 7.

In addition to large shard size, the ‘perfect shard’ assumption
has other drawbacks. Firstly, in reality shards can be faulty. The
presence of even a single faulty shard means that the system has
failed, which is undesirable. Secondly, due to the assumption
that shards will always produce correct results, contemporary
systems do not have in place mechanisms for faulty shard/block
detection during transaction processing (i.e., before a transaction
block is appended to the blockchain). So, an invalid (faulty)
transaction block validated by a faulty shard may get appended
to the blockchain, sometimes with irreversible damages (e.g.,
loss of users’ trust and devaluation of the entire blockchain
ecosystem).

To overcome the previous drawbacks, this research proposes
a second round of transaction block validation to commit a block
with finality. This is achieved as follows: let S represent a large
shard of size M that would have been formed in a contemporary
sharded system. Instead, S is split into k& smaller shards which
together form a group. A transaction block is then assigned to



all the £ smaller shards in a group. In other words, a one-to-k
mapping of a transaction block to shards is applied, instead of a
one-to-one mapping of a block to a shard in a contemporary
system. The parameter £ is also called the mapping factor. A first
round of block validation is applied inside each individual shard
to validate a transaction block (i.e., intra-shard consensus).
However, unlike the contemporary systems, a second round of
consensus is subsequently required among all the k£ shards in a
group to validate and finally commit the block (i.e., inter-shard
consensus among the shard leaders). This approach of one-to-
many block-to-shard mapping coupled with the addition of a
second round of consensus for block validation in an epoch
enables the following: (1) capability of faulty block/shard
detection during transaction processing with high probability,
before a block is appended to blockchain; (2) smaller shard sizes
giving better intra-shard performance; (3) smaller collective
fault probability of the k shards in a group, with the proper
selection of various parameters, as compared to individual fault
probability of a large shard S in contemporary systems; and
finally (4) relaxation of the ‘perfect’ shard assumption so that
the system can maintain ‘safety’ [7] and be tolerant to faulty
shards up to a certain threshold (Table 1).

The paper is organized as follows: Section II discusses the
background and related works. Section III describes the multi-
round block validation approach and two different ways to
achieve it. Theoretical and use case analyses are presented
which show the advantages of the multi-round approach. Section
IV elaborates on some key performance metrics and continues
discussion on the use cases to illustrate how a good mapping
factor k can be chosen. Finally, Section V concludes the paper
with a discussion on future works.

II. BACKGROUND

A. Complete Random Sampling and Shard Formation

A shard can be considered as a sample taken from the total
number of nodes, N in a blockchain system, where N represents
the population. The shard failure probability can then be
calculated using the cumulative Hypergeometric distribution
[8]. Complete random sampling generally gives the best shard-
formation results in public blockchains, as shards need to be
unbiased. Random assignment of nodes to shards prevents
adversaries from pre-determining to which shard they would be
allocated, therefore making collusion of such malicious parties
harder.

The Hypergeometric distribution in turn depends on four
parameters: (1) total nodes N, (2) shard size M, (3) f(maximum
allowable faults in a shard which is usually dictated by the
network model and the consensus algorithm used), and (4) F
(maximum allowable faults in a system). Let proprow represent
the proportion of faulty nodes in the whole system and propsiara
represent the proportion of faulty nodes inside a shard. Then,
Propsiara = f/M and propro =F/N. If propspara = proprow, the
cumulative hypergeometric distribution (1) yields a shard failure
probability of around 0.5, which is large and undesirable. Recall
that we should aim to minimize shard failure probability. If
DPrOPTowl < Propsmara, the lower the value of propry is, the lower
is the shard failure probability. The contrary is true as well where
Proprowt > Propsmara yields a high probability of failure.
Contemporary systems tend to use conservative values of F

(minimize propros and maximize propspara) and/or M (large
shard sizes) to obtain negligible failure probabilities.

1) Correlation between Shard Size and Sampling

Let X be the random variable denoting the number of faulty
nodes in a sampled shard. To determine the failure probability
of a shard, we should calculate the probability of obtaining no
less than f faulty nodes when randomly selecting a shard of size
M without replacement from a population of N nodes that
contains at most F faults [8]. This is precisely what the
cumulative hypergeometric distribution can be used for as
shown in (1).
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In (1), we assume that at least a third of a shard’s nodes need
to be faulty (> M/3) for that shard to be considered faulty. If F’
and N remain constant, the failure probability of a shard
decreases as the shard gets bigger (i.e., as M increases). Small
shards tend to be more performant (smaller number of message
exchanges) but less fault-tolerant (smaller number of nodes to
corrupt) while the reverse is true for large shards. We use (1)
extensively to calculate shard failure probabilities in this paper,
especially in Tables 2, 3 and in Section III D (Use Case
Analysis).

P (X > l%J) = Zf:lMJ —(5)(2]1:5 (D)

2) Correlation between BFT Consensus and Sampling

Validators inside a shard need to reach agreement
(consensus) on a number of decisions such as block validity,
security certificates during cross-shard transactions [8], and
order of transaction blocks on the blockchain. While various
consensus algorithms exist in the literature, contemporary
blockchains use variants of the BFT consensus algorithm to
agree on decisions. In this paper, in every consensus round, we
use either classic synchronous BFT [6] or classic partially
synchronous BFT, e.g., PBFT [5]. There are other variants of
BFT which could also be used in each round of consensus and
are discussed in the next subsection.

Partially synchronous BFT algorithms can withstand up to
less than 1/3 faulty nodes in a shard (i.e., X < M/3 in (1)) [5]
while the fault threshold of synchronous BFT algorithms [6], [9]
is less than 1/2 (i.e., X < M/2 in (1)). Recall that proprom <
Propsnara to minimise failure probability. Therefore, propspaq in
partially synchronous systems (e.g., [4] and [10]) is set to 1/3
while propr.ai is generally set to a conservative value of 1/4. In
synchronous systems such as [8], propsnara 1s set to 1/2 while
Proprow is usually set to 1/3. These thresholds are used in
Sections III and IV to be consistent with other systems.

B. Single and Multi-Layered Consensus Protocols

HotStuff BFT by Yin et. al [11] achieves linear
communication complexity at the expense of increased latency
and is widely used in blockchains such as Facebook’s LibraBFT
[12]. HotStuff BFT achieves linearity by using threshold
signatures [13] and introducing an additional round of message
exchanges (called a pre-commit phase) between the prepare and
commit phases found in classic BFT protocols. Note that
HotStuff BFT and classic BFT protocols such as PBFT [5] are
all single-layered consensus protocols.



Another class of consensus algorithms operate using a multi-
layered structure. The goal of this reorganization of network
structure is to improve node scalability and to collectively
reduce the number of message exchanges to achieve sub-
quadratic communication cost. The authors of [14] describe a
partially synchronous 2-layer BFT protocol that reduces
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communication cost from O(N?)to O(1.9N3) . They
subsequently generalize this protocol to X-layers, such that
linear communication complexity can be achieved when
network layer depth XMax is maximized. Similar to HotStuff
BFT, the reduction in message complexity comes at the expense
of increased latency. Beh-Raft-Chain [15] is a sharded
blockchain which uses a multi-layered Raft consensus protocol
[16] inside its shard instead of BFT. Although Raft has linear
communication cost, it cannot be used in the presence of
Byzantine nodes (such as in a blockchain-based ‘real-world’
environment), as Raft uses the strong assumption that shard
leaders need to always be honest to maintain safety. This is not
the case for BFT protocols as safety is maintained even if a
leader is malicious, provided that the respective Byzantine fault
threshold is not exceeded. Therefore, Beh-Raft-Chain devises a
scoring metric and uses a sortition algorithm to rank the
‘honesty’ of nodes based on their behavior. Nodes with the
highest ‘honesty’ scores are assumed to be non-faulty (i.e.,
honest) and are then chosen for leadership roles. A supervising
committee exists in every shard, which monitors the shard leader
(hence the multi-layer structure). Behavior is deterministically
defined and monitors can report a leader if the latter lands in a
malicious state.

Our work has two rounds of consensus in an epoch to
validate and commit a block with finality by agreeing on a
Merkle root [17] for that block. The current work uses single-
layered classic BFT protocols (e.g., [5], [6]), both inside shards
(intra-shard consensus in the first round) and among shards
(inter-shard consensus in the second round), for ease of
expression. However, other optimized and state-of-the art
consensus protocols can be used in either round of block
validation. Two different consensus protocols could also be used
in the respective rounds of the same epoch.

C. Faulty Block Detection in Sharded Systems during
Transaction Processing

Most contemporary systems have no mechanisms to detect
faulty blocks (and consequently faulty shards) during
transaction processing [4], [8], [10]. These systems instead
assume that shards are ‘perfect’ and always output the correct
result during an epoch. They use conservative fault parameters
and shard sizes to minimize failure probability as discussed
previously. OmniLedger [4] uses a partially synchronous intra-
shard BFT algorithm and obtains shard sizes of 600-800 for a
realistic shard failure probability (e.g., 1 x 1071%). A shard size
0f' 600-800 is considered to be very large and impacts intra-shard
performance negatively as OmniLedger’s consensus protocol
has quadratic communication cost. RapidChain [8] attempts to
improve upon OmnilLedger by using a synchronous BFT
protocol which is not responsive [18]. While RapidChain
obtains smaller shard sizes of around 300-400 nodes, it trades
off a key performance property of BFT algorithms called
responsiveness for increased resiliency due to its use of

synchrony [9], [18]. In the multi-round block validation
approach presented in this paper, the aim is to obtain shard sizes
that are much smaller than those of OmniLedger by splitting a
contemporary shard into smaller fragments to gain in
performance, but without compromising the collective fault
tolerance of the entire system.

Chainspace [19] has auditing mechanisms in place to
identify potentially faulty shards. Non-faulty nodes maintain
enough information to be able to trace back inconsistencies to
specific shards and therefore flag them. However, these faulty
shards can only be detected after transaction processing,
following which corrective measures can be undertaken.
Furthermore, a full audit needs to be performed by an ‘auditor’
by potentially scanning the entire blockchain to detect such
inconsistencies. This can obviously be very costly in terms of
resources. In contrast, the multi-round block validation approach
presented in this paper can detect potentially faulty shards with
high probability during transaction processing, before an
irreversible damage is done. Fault detection can also be
relatively ‘less costly’ than Chainspace’s mechanism, as faulty
shards do not need to be specifically detected to prevent a faulty
block from being appended to the blockchain. The amount of
information and time required are significantly less, i.e., only
final validation results from shards are required.

OptiShard [20] is a hierarchical and centralized blockchain
system that uses the ‘overlapping transactions’ method to detect
potentially faulty shards during transaction processing with
some limitations, discussed in the following. A central authority
chooses a set of transactions (overlapped set) and broadcasts it
to all shards for validation. The overlapped set’s results are then
verified by the central authority. Shards that output incorrect
results for the overlapped transaction are flagged as faulty.
However, if a malicious shard manages to process the
overlapped transaction correctly but corrupts other transactions
in a block, the latter will go undetected and the faulty block will
still be appended to the blockchain. The central authority can
furthermore become a bottleneck. The multi-round consensus
approach presented here mitigates such limitations and
bottlenecks.

III. THE MULTI-ROUND BLOCK VALIDATION APPROACH

Problem Statement: All contemporary sharded systems
known to us employ one-to-one mapping of transaction block to
shard; hence they require a single round of consensus (intra-
shard consensus) for block validation. In such systems, trade-
offs must be made in terms of fault tolerance and performance,
i.e., increasing shard size increases fault tolerance but decreases
performance, and vice versa. We observe that by introducing a
second round of consensus among the shards assigned to
validate the same block, more flexibility can be achieved in
adjusting fault tolerance. In this research, the second round of
consensus is achieved in two broad ways: (1) assigning each
transaction block to & contemporary shards and then have a
second round of consensus among the k£ shards; or (2) split a
contemporary shard into % smaller shards, assign each
transaction block to £ such smaller shards, and then have a
second round of consensus among the & smaller shards. It can be
shown that both the previous approaches can give better fault
tolerance because the collective failure probability of the &



shards can be made smaller than the individual failure
probability of a single contemporary shard, with suitable
selection of parameters. Additionally, the second round of
consensus gives fault-detection capability which enables
detecting potentially faulty blocks with high probability during
transaction processing. However, the first approach comes with
the drawback of decreased throughput. On the other hand, the
second approach does not affect throughput and can in fact can
give better theoretical performance due to the use of smaller
shards. In all the cases, fault-tolerance is increased, and faulty
block detection during transaction processing is enabled. The
previous discussion is elaborated in the following.

Consider a shard S of size M in a contemporary system. If S
is faulty and includes some invalid transaction(s) (e.g.,
committing fraud or double-spending [21]) in a transaction
block B, then B will be appended to the blockchain although it
is an invalid block. This violates the ‘safety’ property [7] of the
blockchain, and the entire system is considered to have failed,
presumably with irreversible damage. There are no mechanisms
to detect an invalid block during transaction processing (or
during the epoch). Let Pconemporaryshardraiture b€ the probability
that S is faulty and approves an invalid block.
P ContemporaryShardraire can be calculated using the cumulative
Hypergeometric distribution (refer to (1) in Section II).

The following approaches can be used to prevent approval
of an invalid block by a faulty shard.

A. Approach 1: One-to-many Mapping of Transaction Block to
Contemporary Shards followed by Second Consensus Round

Consider an approach where each transaction block B is
assigned to k contemporary shards for validation instead of a
single shard (i.e., one-to-many mapping of transaction block to
shard). Recall that in a contemporary system it is a one-to-one
mapping of block to shard. Each shard individually validates the
block (intra-shard consensus), followed by a second round of
consensus among the & shards validating the same block (inter-
shard consensus). If a faulty shard attempts to approve an invalid
block, it could be flagged by the second round of consensus
because its validation result will not match the validation results
of the other non-faulty shards.

In the following discussion, the parameter k is called the
mapping factor and the group of k shards validating the same
block is called a group.

To simplify the discussion, let us start with 100% consensus
requirement in the second consensus round. Subsection III C
relaxes this consensus requirement. In such a scenario, a faulty
transaction block will be validated and appended to the
blockchain if and only if all the & shards in the group are faulty.
Let the probability of all £ shards being collectively faulty be
represented by P CollectiveFailure - Then:

— k
PCollectiveFailure - (PContemporaryshardFailure) (2)

Let Pyuia be the probability that a transaction block gets
correctly validated, or a potentially invalid transaction block
gets detected. It is given by the complement of (2):

Pyatia = 1 = Peoutectiveraiture

=1- (PCOntempararyShardFailure)k (3)

As a result, the following are deduced:

1) Capability of Faulty Block Detection and Increased
Fault Tolerance

From (2) and (3), it can be inferred that as the mapping factor
k increases, the likelihood of correctly validating that block
increases as the probability that a group of & shards fail
collectively decreases. This is also equivalent to saying that the
likelihood of potentially faulty block detection increases. Note
that Peoectiveraiture < PContempomryShardFailure-Thereforev the 1 0
k block to shard mapping together with the second consensus
round among the k shards enables faulty block detection with
high probability and increased fault tolerance by reducing the
collective failure probability.

An obvious question arises: instead of the multi-round block
validation approach, why not merge the & shards to create one
bigger shard, use one-to-one mapping of blocks to bigger shards,
and use a single round of consensus as in contemporary systems.
It has two obvious drawbacks: firstly, a single round of
consensus will disable faulty block detection. Secondly, larger
shard size will degrade performance and consequently
throughput. Merging is the opposite of splitting and the same
discussion can be carried out in terms of splitting. Next
subsection (subsection III B) describes a scheme based on
splitting of contemporary shards to smaller shards, together with
a detailed discussion on performance and fault tolerance.

2) Relaxation of the ‘Perfect’ Shard Assumption

In case of 100% consensus requirement in the second
consensus round, all & shards need to fail collectively for the
approval of a faulty block. The presence of even a single
‘perfect’ (non-faulty) shard giving the correct validation is
sufficient to prevent faulty shards from gaining a 100% majority
in a group. In other words, only one out of £ shards per group
needs to be ‘perfect’ to maintain safety. Hence there is a
relaxation of the ‘perfect’ shard constraint in the entire system
by a factor of k. Recall that all shards need to be ‘perfect’ in a
contemporary system for maintaining safety and producing
correct results. The 100 % consensus requirement in the second
consensus round can be relaxed; however, it will result in
decreased fault tolerance. This is discussed in detail in
Subsection III C.

The obvious drawback of Approach 1 is the decrease in
throughput 7 of a contemporary system by at least a factor of &,
because the number of groups of & shards validating a distinct
block per epoch becomes £ Fig. 1 illustrates a scenario with k=

2.

Fig 1. One-to-two mapping of a transaction block to shards.

The reduction in throughput is remedied by Approach 2 in
the following.



B. Approach 2: Splitting of Contemporary Shards to Maintain
Throughput

Consider a different approach where each contemporary
shard S of size M is first split into k equal-sized smaller shards
(called Transaction-processing shards or Txp shards) of size m7y
each, ie., k X mpr = M. In a system comprising of T
contemporary shards, number of 7xp shards obtained after the
split amounts to (7 x k), and there are T distinct groups of k Txp
shards each. Approach / is now applied after the split, i.e., 1 to
k mapping of a transaction block to k& Txp shards in a group and
second round of consensus between the & shards shards in each
group. Each group of k Txp shards validates a different block
every epoch. Therefore, the split enables to maintain throughput
T as compared to the solution discussed in Approach /.

1) Increase in Fault Tolerance after Split as compared to
Contemporary Systems

Intuition of split: in a contemporary system, if S is faulty
then a potentially faulty block may be validated and
subsequently be appended to the blockchain. On the contrary, if
S is faulty but split into £ smaller shards, it is not necessary that
all the k& smaller shards will be faulty, i.e., the likelihood
(probability) of all £ shards being faulty in the group formed by
splitting S is lower than the likelihood that the original shard S
is faulty. If the second consensus round requires 100%
consensus among the k shards to validate a block (i.e., all &
shards need to agree on the same Merkle root), the presence of
a single non-faulty shard in the group is sufficient to detect a
faulty block. Therefore, the likelihood of detecting a faulty block
is higher after splitting S, as the split might result in at least one
non-faulty shard with high probability (Fig. 2). Splitting S
comes with the added benefit of maintaining throughput 7.

Correct
Shard

| oot g

Correct
Shard

Fig 2. Formation of at least 1 non-faulty shard after splitting a
faulty shard is sufficient to detect a potentially faulty block.

Let Pryrainre be the probability that an individual 7xp shard
of size mry is faulty. Let N be the total number of nodes in the
system. Then, the probability Pcoectiveraitre that a group of k Txp
shards fails becomes:

— k
PCollectiveFailure - (PTprailure) (4)
Pyaiia = 1 = Peonectiveraiture = 1 — (PTprailure)k (5)

Note that my, = and Pryraine can be calculated

N
(Txk)’
from (1). It can be seen that an increase in mapping factor k
results in a decrease in individual Txp shard size m7y. A decrease
in shard size results in an increase in the probability Prraiture
that an individual shard is faulty. Hence increasing mapping
factor k increases the likelihood that an individual 7xp shard
fails. However, due to the second consensus round validation
step where, in case of 100% consensus, all k£ Txp shards in a

group need to fail collectively for an invalid transaction block to
be appended to the blockchain.

Failure probability Prepruinre of an individual Txp shard after
the split is much higher than the failure probability
P ContemporaryShardraire 0f an original contemporary shard S.
However, when appropriate values of k& are chosen, it can be
observed that the collective failure probability of a group of k&
Txp shards can be lower than the failure probability of an
individual contemporary shard S, i.e.,

PCollectiveFailure « PContemporaryShardFailure

Use case analyses in Subsection III D and Section IV
elaborate on this observation. The multi-round block validation
approach with split can therefore not only be more resilient to
faults as compared to contemporary systems but can also enable
the detection of faulty transaction blocks during transaction-
validation with high probability. It can furthermore relax the
“perfect” shard assumption and tolerate faulty shards in the
system up to a certain threshold without compromising safety
(refer to Table 1).

2) Theoretical Improvement in Intra-shard Performance
due to Split.

Classical BFT algorithms are quadratic in message
complexity [5], [6]. For a contemporary shard S of size M, intra-
shard message complexity is O (M?) per consensus. In the
multi-round approach with split, intra-shard message

complexity per consensus becomes O(IZ—ZZ) for each of the Txp

shards which work in parallel on the same transaction block.
Hence, number of message exchanges decreases by a factor of
k? inside Txp shards when one-to-k mapping is used with
quadratic BFT algorithms. For large values of , the reduction in
number of message exchanges can considerably boost intra-
shard performance. If a state-of-the-art linear BFT algorithm
such as HotStuff [11] is used, message complexity per

consensus of a Txp shard becomes 0(%); this is a reduction by

a factor of k which is still beneficial. However, it should be noted
that the highest value of k& does not necessarily yield the best
system, because it may compromise on the liveness of the
system and some other metrics discussed in the following.
Proper selection of the value of k is elaborated in Section IV.

3) Bottleneck of 100% Consensus

Achieving 100 % consensus in a distributed system is
challenging and usually requires a trusted central authority;
however, it goes against the concept of blockchain. The central
authority can be a bottleneck in terms of both fault tolerance and
performance. Failure of the central authority means that the
entire system has failed (i.e., single point of failure).

In a private or semi-private blockchain, the central authority
can be chosen by the private entities or consortiums in charge of
the blockchain and thus can be ‘perfect’. However, in public
blockchains where the primary adversary being dealt with tends
to be Byzantine, sharded systems use variants of the Byzantine
Fault Tolerance (BFT) protocol (e.g., [5], [6], [11]) to achieve
consensus. When BFT consensus is used, the requirement of
having 100% consensus among k shards in a group becomes
infeasible because classical BFT algorithms are already optimal
in terms of quorum sizes and the number of faults they can



withstand inside a shard. Increasing quorum size to k votes for
100% consensus would actually compromise on the safety of the
system while decreasing quorum size could compromise on
liveness. Other types of BFT consensus algorithms such as
Flexible BFT can offer more flexibility [22], [23] in terms of
quorum sizes, but they come with different fault model(s) and
other considerations, and are beyond the scope of this paper.

In the following discussion, we relax the consensus
requirement from 100% and use BFT protocol in the second
round of distributed consensus to reach agreement among the k
shards in a group.

C. Using Classic BFT in the Second Round of Consensus

In every epoch, an inter-shard BFT consensus is carried out
among the k shard leaders of a group assigned to validate a block
(Fig. 3). Multiple leader-selection algorithms already exist in the
literature and are beyond the scope of this paper.

Group 1 Group 2

Validation Results \:,.:
S Comemn

Second layer

Consensus

Second layer
Consensus
Group 3 k Txp shards in a
Eroup

Fig. 3. Three shards S of size M are each split into k=4 Txp
shards of size mr, each.
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The consensus requirement depends on the type of the BFT
algorithm used. For instance, partially synchronous BFT can
withstand less than 1/3 faulty nodes (Byzantine nodes) in a
shard, while the fault threshold for synchronous BFT is slightly
less than 1/2. In other words, in partial synchrony [9], [24], more

2k . S
than 5 shards in a group need to have the same validation result

(i.e., Merkle root) for a transaction block to be approved (i.e.,
67% consensus requirement). In synchronous BFT [9], 51%

L . k .
consensus majority is required and hence more than 3 shards in

a group need to have the same validation result for a transaction
block approval.

1) Increase in number of ‘Perfect’ Shards required for
Safety when Second-round Consensus Requirement is Relaxed
Based on the previous discussion, the number of ‘perfect’
Txp shards required to maintain safety in a group of k shards

increases from one (in case of 100% consensus) to at least

E] or E] depending on which type of BFT protocol is used. In

general, the collective failure probability for a group of & shards
can be modelled using the binomial distribution and is given by:

k
©
X (PTprailure)L (6)
X (1 - PTprailure)k_l

_ k
PCollectiveFailure - Zi

In (6), i can take the values of k (100% consensus using

2k3+1 %l (51%
consensus). Note that decreasing (or relaxing) the consensus
requirement of a group of & shards increases its collective failure
probability, PcoieciiveFaiture, and hence decreases its fault tolerance
and the ‘likelihood’ of detecting faulty transaction blocks. Table
1 illustrates the various trade-offs.

central authority), [ ](67% consensus), or

Table 1. Trade-offs between different consensus requirements.

Number of ‘perfect’ shards required

Consensus Requirement To Maintain Safety To Make Progress
100 %
1 out of k k out of k
(Central Authority only)
G k 2k +1
PartiallySynchronous BFT 3
iallySynchr [3] [ 3 l
51 % k k+1
(Synchronous BFT) [E] [ 2 ]

2) Theoretical Performance in an Epoch

Although approach 2 processes the same number of
transaction blocks 7 per epoch as contemporary sharded
systems, there can be a potential decrease in number of message
exchanges per epoch due to the following: intra-shard
communication complexity decreases by a factor of k or &’
depending on the consensus algorithm used. However, this
decrease is offset by the distributed second consensus round
which can have message complexity of O(k) or O(k?) depending
on the BFT protocol used; though £ is rather small. Assuming
perfect concurrency, the communication complexity per epoch

of a group of k shards in approach 2 is O (TB + 1;1_22 + k?) for

quadratic BFT, where 7B is the average transaction block
validation time.

D. Use Case Analysis

The following use case assumes the partially synchronous
network model within shards. A faulty node is considered to be
Byzantine only. Hence, each shard can tolerate less than 1/3
faulty nodes (i.e., /< M/3). The maximum number of Byzantine
faults F' that can be present in the system is set to N/4. This
threshold is used to adhere to the parameters that other partially
synchronous sharded blockchains use [4], [10]. These
parameters and the fault model can be changed to obtain
different levels of fault-tolerance and performance [22], [23].

Consider the use case with total nodes N = 2000 and
maximum number of Byzantine faults present in the system, F
= N/4=500. Approach 2 with split (Sections III B and C) is used
in this scenario such that a second round of consensus among
the k shards in a group is required for validation of a block with
finality. The following discussion quantitatively demonstrates
that the Approach 2 can be made more fault tolerant as compared
to a contemporary sharded system by making proper choices of
the parameters, e.g., mr, T, and k. Moreover, fault can be
detected with high probability during block validation in an



epoch, rather than after, so that an invalid transaction block is
not appended to blockchain by a potentially faulty shard.

1) Impact of Mapping Factor k on Collective Fault
Tolerance of a Group of k Txp Shards

Let the desired throughput 7 of the system be 4. In a
contemporary sharding system, 4 big shards S, each of size M
=500, would be formed. In contrary, in Approach 2, each shard
S is split into k smaller Txp shards. Table 2 and Fig. 4 illustrate
the results from these possible splits for k=2, 4, 5, 10, and 20.
Table 3 and Fig. 5 illustrate the results of possible splits when
desired throughput 7'is 2, i.e., 2 big shards of size A=1000 are
created in a contemporary system. It can be seen that as mapping
factor k increases, individual Txp shard size gets smaller
resulting in higher individual shard failure probability Prraiture.
However, the collective failure probability Pcoeciveraiture Of @
group of k Txp shards decreases, therefore making the system
more fault resilient. This increase in collective fault tolerance is
the general trend for the 3 different consensus requirements
discussed in this paper (i.e., 100%, 67%, and 51%) with
increasing mapping factor k. Note that when k =1, Approach 2
becomes equivalent to a contemporary system.

Table 2. Failure probabilities with different mapping
factors when M= 500.

T Individual Collective group failure
Mapping shafd fShf' rd probability, P CollectiveFailure
. ailure
factor, k| size. | probability, [ 100% 67% 51%
Mt PTxp Failure | Consensus | Consensus | Consensus
1 500 6x107 N/A N/A N/A
2 250 7x10* 5x 107 N/A N/A
4 125 0.016 7x10°% 2x10° 2x 107
5 100 0.025 9x10° 2x10° 1x10*
10 50 0.096 6x 10" 7x10° 1x10*
20 25 0.15 3x 10" 4x10°% 3x10°
50 10 0.22 3x10% 8x 107" 5x10°

Table 3. Failure probabilities with different mapping
factors when M = 1000.

i Individual Collective group failure
Mapping Sha:lr)d fS hla rd probability, PcoftectiveFaiture
. ailure
factor, k1 size, | probability, [~ 100% 67 % 51%
M PTxp Failure | Consensus | Consensus | Consensus
1 1000 2x 107 N/A N/A N/A
2 500 6x 107 4x107" N/A N/A
4 250 7x10* 2x 10" 1x10° 3x10°
8 125 0.016 5x10" 5x 1071 6x10%
10 100 0.025 8x 10" 6x 1071 4x10%
20 50 0.096 4x10% 1x107° 4x107
40 25 0.15 6x 103 6x 10 3x10%
100 10 0.22 1x10% 2x 107 4x101°

2) Effect of Relaxing Second Consensus Requirement on
Collective Fault Tolerance and on ‘Perfect’ Shard Constraint

It can be deduced from Tables 2 and 3, and Fig. 4 and 5 that,
as the second consensus requirement is relaxed, collective fault
tolerance of a group decreases (i.e., failure probability
increases). For example, consider the mapping factor k£ = 10 in
Fig. 4. For 100 % consensus requirement, PcoiecriveFaiture 15 6 X 107
. When the requirement is relaxed to 67%, Pcoiectiveraiture
becomes 7 x 10, and further increases to 1 x 10 for 51%
consensus.

Number of ‘perfect’ shards required to maintain safety per
group therefore increases (Table 1 top to bottom) as consensus
requirement is relaxed. In general, the stricter the consensus
requirement is, the more the ‘perfect’ shard constraint can be
relaxed to maintain safety. This is also equivalent to saying that
the stricter the consensus requirement is, the greater number of
faulty shards a system can withstand. Recall that in a
contemporary system, the presence of even a single faulty shard
means that the system has failed due to the strict ‘perfect’ shard
assumption.

PCollectiveFailure

1077

1079

10~1
10 20 30 40 50

~e— Contemporary -=- Collective 100%

Mapping factor k

—+— Collective 67% -« Collective 50%

Fig 4. Effect on collective failure probabilities at different
consensus requirements when S of size M = 500 is split into &
smaller Txp shards.

PCollectiveFailure
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1~
107

10="

20

107

- Mapping factor k
)

20 40 60 80 100

-+ Contemporary -=- Collective 100%
—+— Collective 67% —— Collective 50%
Fig 5. Effect on collective failure probabilities at different

consensus requirements when S of size M = 1000 is split into &
smaller Txp shards.



3) Impact of Throughput T on Collective Fault Tolerance

Recall that Txp shard size m, = where T is the

_N_
(T x k)’
desired throughput of the system. Rearranging the previous

equation, we get T = The previous equation shows

(mrxx k)’
that throughput 7 is inversely proportional to both mapping
factor k and shard size my.. With increasing 7, the ranges of
possible values for both & and m7y decrease. Based on the
previous discussion, an increase in 7 results in an increase in the
collective failure probability Pcoiecriverainre 0f @ group of k shards
and therefore a decrease in fault tolerance of the system.
Decreasing T has the opposite effect. Figures 6 and 7 illustrate
the collective failure probabilities with different second-round
consensus requirements (i.e., 100% and 67%) for the current use
case, with some of the possible splits and desired throughput
values (i.e., T=2, 4, and 8).

PCollectiveFailure

10°

10r12

107‘!7

Mapping factor k
5 10 15 R

o T=2,M=1000 -= T=4, M=500 —e— T=8, M=250

Fig. 6. Collective failure probabilities of a group of k shards at
different throughputs and mapping factors (100% Consensus).
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Fig. 7. Collective failure probabilities of a group of k shards at
different throughputs and mapping factors (67% Consensus).

IV. CHOOSING A GOOD MAPPING FACTOR K

A. Liveness Attack and Progress

Care should be taken in choosing a good mapping factor.
Opting for the highest value of k£ does not necessarily lead to a
better system in terms of both performance and fault tolerance.

Liveness Attack: In the case of 100% consensus requirement in
the second round of consensus, among the & shards in a group to
validate a transaction block, the presence of a single faulty shard
is sufficient to halt the progress of that group. A single faulty
shard can always send invalid results in every epoch such that
the group it belongs to never reaches 100% consensus, i.e., that

group never makes progress and never validates blocks although
safety is maintained. We term this lack of progress as a liveness
attack.

1) Impact of Mapping Factor k on Liveness

Recall from the previous discussion that when mapping
factor k increases, the probability Priyrainse that an individual
Txp shard is faulty increases, however the collective failure
probability Pcoiecriverainre decreases. Although the collective fault
tolerance of the system (safety property) increases with
increasing value of £, the system becomes more prone to
liveness attacks (no progress) as it becomes easier to corrupt a
shard individually.

A group of k shards requiring 100% consensus can suffer
from a liveness attack when at least 1 of its shards is faulty.
Hence, the probability of liveness attack in that group is given
by Privenessanack = 1 — P(all shards in the group are non-faulty).
This can also be formulated as follows: P;;penessattack = 1 —
1- PTpra”ure)k for 100% consensus. Figures. 8§ and 9
support our analysis that a group is more prone to liveness
attacks if it has more shards (i.e., if S is split into more
fragments), because as the shards get smaller it becomes easier
to corrupt them individually.

PLivenessAttack
1

0.100
0010
0.001

1074

Mapping factor k
5 10 15

—+— Liveness 100% -=— Liveness 67% —+— Liveness 50%

Fig. 8. Probabilities of liveness attack for different consensus
requirements and k& values when M = 500.
PLivenessAttack
1L .
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0100}

o050l lv/
0010} /

0.005 Mapping factor k
5 10 15 20 25 ppina

—o— Liveness 100% -=— Liveness 67% —o— Liveness 50%

Fig. 9. Probabilities of liveness attack for different consensus
requirements and & values when M = 250.

2) Impact  of Relaxing  Second-round  Consensus
Requirements on Liveness

In the case of 67% consensus, a group will not make progress
if at least g shards are faulty. In general, the probability of a

liveness attack for any consensus requirement can be formulated
as follows:



k
O
X (PTprailure)] (7)
X (1 - PTprailure)k_]

In (7), j can take the values of 1 (100 % consensus), org

— Vk
PLivenessAttack - Zj

(67% consensus), org (51% consensus). It can be inferred from

Table 1 and (7) that as the consensus requirement is relaxed (as
we go down Table 1), more shards need to be faulty and produce
invalid results to prevent progress of a group. For example, only
one shard needs to be faulty to prevent 100% consensus

. . K
requirement while at least 3 shards need to be faulty to prevent

non-faulty shards from reaching 67% consensus. Therefore,
when consensus requirement is relaxed, a group can withstand
more faulty shards in terms of liveness, Privenessanack decreases,
and it becomes easier to make progress (Fig. 8 and 9); however,
it comes at the expenses of higher collective failure probability
and reduced safety (Tables 1-3 and Fig. 4-5).

B. Expected Throughput E(T) per Epoch

Let Pprogress be the probability that a group of k shards makes
progress during an epoch, i.e., the group does not suffer from a
liveness attack and therefore correctly validates a transaction
block during that epoch. As a follow up of (7), it can be
formulated as:

PProgress =1- PLivenessAttack (8)

Let Y be the random variable denoting the number of groups
of k shards out of all 7 groups in a system that make progress in
that epoch. Since each group has only 2 possible outcomes
(progress or no progress), and their outcomes are independent of
other groups after being sharded, the binomial distribution can
be used to calculate the probability that 7 groups out of 7" make
progress in an epoch, where 0 < ¢ < T. If ( > 0), we call the
system to be partially live. The probability that # out of 7 groups
make progress in an epoch is given by:

P(Y = t) = (Z) X (PProgress)t X (PLivenessAttack)T_t (9)

Following from (9), the expected throughput £(7) per epoch
is given by:

E(T) =¥T_,t xP(Y =1t) (10)

Equation (10) can be simplified to (11) below. Details of the
calculation are omitted due to space constraints:

E(T) =T X PPTogress (11)

E(T) represents the expected number of groups that will
make progress during an epoch, which translates to the expected
number of blocks that will be correctly validated in the system
during that epoch. E(7) is a useful metric that can be referred to
when trying to find a good balance between fault tolerance and
performance (throughput).

1) Impact of Increasing Mapping Factor k on Expected
Throughput

Fig. 10 and 11 plot expected throughput values against
mapping factor k for 3 different consensus requirements when
desired throughput 7 is set to 4 (M=500) and 8 (M=250)

respectively. We note that with increasing &, shards become
more prone to individual failures. It becomes easier to corrupt at
least 1 shard in a group requiring 100% consensus and hence
more groups become vulnerable to liveness attacks. The same
applies for the other consensus requirements. As a consequence,
expected throughput of a system decreases with increasing
values of k. Hence, a larger value of k does not necessarily yield
a better system when performance also has to be considered.

Expected Throughput E(T)

05¢

02f

Mapping factor k
~e— E(T) 100% =-=— E(T)67% -+ E(T)50%

Fig. 10. Expected Throughput for different consensus
requirements and mapping factors when 7'=4 and M = 500.
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Fig. 11. Expected Throughput for different consensus
requirements and mapping factors when 7= 8 and M = 250.

2) Impact of Relaxing  Second-round  Consensus
Requirement on Expected Throughput

As the consensus requirement is relaxed in the second round,
it becomes more difficult to attack liveness and prevent progress
as more shards need to be faulty in a group. For example, only
one shard needs to be faulty to prevent progress when 100%
consensus is used, while at least £/3 shards need to be faulty in
the case of 67% consensus. Hence, relaxing consensus
requirement makes it more difficult for liveness attacks and
hence easier to make progress. As a result, Expected Throughput
E(T) of a system increases (Fig. 10 and 11).

C. Choosing a Good Mapping Factor k

We analyze Fig. 4 to 11 to come up with good mapping
factor values k£ for the use case in Section 3 with N=2000,
F=N/4=500, and partial synchrony (67% consensus) inside Txp
shards. Note that the second consensus round can however be
modeled as either synchronous (51% consensus) or partially
synchronous (67% consensus) in this use case.

Consider the case where desired throughput 7 is 4. A
contemporary system would form 4 shards S, each of size M =
500 which has failure probability Pcomemporaryshardraiture = 6 X 107
7. By splitting S into multiple smaller Txp shards, k values of 2



and beyond give better collective failure probabilities than
unsplit S when 100% consensus is used in the second round (Fig.
4 and 6). As mapping factor k increases, liveness gets affected
and hence Expected Throughput E£(7) of the system decreases.
Possible & values with E(7) close to 7= 4 and good collective
fault tolerance are k=2, 4, and 5 only (Fig. 10). Therefore, when
100% consensus is used, good fault tolerance can be obtained by
splitting S of size M =500 into 2, 4 or 5 fragments.

However, in the case of 67% consensus in the second
consensus round, £ values of 5, 10, 20 and 50 result in fault
tolerance better than or comparable to PconemporaryShardraiture = 6 X
1077. Liveness and consequently E(7) is barely affected when the
consensus requirement is relaxed from 100% to 67%, and hence
E(T) for all the 4 possible k values remain close to the desired
throughput 7= 4.

Consider another case where the desired throughput 7 is 8.
A contemporary system would form 8 shards S, each of size M
=250 which has failure probability Pconemporaryshardrainre =7 X 107
4. By splitting S into multiple smaller Txp shards, k values of 5,
10, and 25 give better collective failure probabilities than unsplit
S when 67% consensus is used in the second consensus round.
Liveness is not affected significantly and the previous & values
give E(T) of 7.4, 7.6 and 7.3 respectively. Hence, the k values of
5, 10, and 25 are all good candidates to obtain good fault
tolerance, including fault detection capability.

The same discussion and analysis can be carried out for other
contemporary shard sizes and consensus requirements to choose
optimal value(s) of & based on both fault tolerance and
throughput.

V. CONCLUSION AND FUTURE WORKS

This paper presents a multi-round block validation approach
in blockchain sharding that introduces a second round of
consensus in an epoch, thus enabling faulty transaction block
detection during transaction processing. The ability to detect
potentially faulty transaction blocks in an epoch before they are
appended to the blockchain can relax conservative assumptions
such as ‘perfect’ shard requirement and large shard sizes. This
can in turn allow the use of smaller shards which can
theoretically lead to lower communication cost during intra-
shard consensus. The paper introduces the novel concept of
splitting a contemporary large shard into a group of & smaller
shards (& is called the mapping factor), one-to-k mapping of a
block to all £ shards in a group, and finally a second round of
consensus on the validation results of the group for the block to
be appended to the blockchain. Three possible consensus
requirements (100 %, 67%, and 51 %) and their trade-offs are
discussed. Though there is an increase in failure probability of
an individual shard due to decreased shard size after the split,
the second round of consensus in a group can decrease the
collective failure probability of the group, while still
maintaining throughput. This is not the case for contemporary
systems where gain in performance usually results in loss of
fault tolerance, and vice-versa. Theoretical and use case
analyses of the multi-round approach are presented which show
that the introduction of the second round of consensus can make
the system more fault resilient without compromising
throughput. The work presented here assumes that each node has
a full copy of the ledger (blockchain), i.e., the ledger is not

distributed. Hence, each node/shard can independently validate
a transaction block. Future research involves experimentally
evaluating our work in a real blockchain environment, and
splitting the ledger, which will need additional inter-shard
communication and protocols for transaction block validation
inside a group. These will be reported in our future works.
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