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Abstract—Incremental graphs that change over time capture
the changing relationships of different entities. Given that many
real-world networks are extremely large, it is often necessary to
partition the network over many distributed systems and solve
a complex graph problem over the partitioned network. This
paper presents a distributed algorithm for identifying strongly
connected components (SCC) on incremental graphs. We propose
a two-phase asynchronous algorithm that involves storing the
intermediate results between each iteration of dynamic updates
in a novel meta-graph storage format for efficient recomputation
of the SCC for successive iterations. To the best of our knowledge,
this is the first attempt at identifying SCC for incremental graphs
across distributed compute nodes. Our experimental analysis
on real and synthesized graphs shows up to 2.8x performance
improvement over the state-of-the-art by reducing the overall
memory utilized and improving the communication bandwidth.

Index Terms—Dynamic graphs, Distributed systems, Strongly
connected components.

I. INTRODUCTION

Detecting Strongly Connected Components (SCCs) in a

large directed graph is a fundamental graph analytics problem.

An SCC is defined as a subset of vertices in a directed

graph with a path from any vertex to every other vertex in

that subset. A graph can have many SCCs, but vertices are

mutually exclusive to these SCCs. Detecting SCCs has many

applications, such as pattern matching [1], topological sort [2],

and graph analytics [3]. Although detecting SCCs by Depth

First Search (DFS) on a directed graph works well for a

sequential approach, performing a DFS can be expensive and

computationally challenging in a parallel architecture [4].

Incremental graphs are extended graph data structures that

undergo continuous updates, such as the addition of nodes and

edges, which present numerous additional challenges. One of

the foremost concerns is maintaining performance efficiency,

as updates to the graph can impact the functionality of graph-

based algorithms, potentially necessitating full recomputation.

Another challenge lies in ensuring data consistency post-

updates, as changes to a single node or edge could impact

the overall graph or its segments. Memory management also

poses a significant issue, particularly with large-scale graphs

that rapidly consume memory resources, requiring efficient

storage and retrieval methods such as graph partitioning or

compression. Traditional graph algorithms designed for static

graphs may not be practical for these dynamic, ever-evolving

structures, hence calling for the development of dynamic

algorithms. Query processing in such a fluid environment

becomes complex, as results must be recalculated after every

modification. If updates to the graph are performed by different

processes or threads concurrently, managing these simulta-

neous alterations to maintain data integrity and consistency

becomes a substantial challenge, often needing locking or

transaction management mechanisms. Lastly, like all data

types, incremental graphs have concerns regarding data privacy

and security. These issues become even more pressing in

distributed environments where it is imperative to ensure that

updates are authorized, and information remains uncompro-

mised. Overcoming these challenges necessitates a blend of

advanced algorithms, effective data management practices, and

adept software engineering techniques, as explained in [5].

To overcome the challenges of parallelizing DFS on static

networks, FW-BW (Forward-backward) approach was pro-

posed [6]. To further improve the performance, trim techniques

which fast reduce a large number of trivial SCCs (e.g., with

one or two vertices, called trim-1 and trim-2, respectively) are

introduced by [7]. Machine learning based optimizations have

also been proposed in [8] and [9] for shared memory systems.

To the best of our knowledge, there has only been one attempt

to detect SCC on distributed networks [10]. For the most part,

the state-of-the-art parallel approaches for detecting SCCs are

optimized for shared-memory systems.

Figure 1, shows an example workflow of computing SCC

for an incremental graph that changes over time. At each

timestep Tn, a new batch of edge insertions are applied over

the graph at time Tn+1. This type of edge addition is a very

common workflow in scientific simulations that periodically

keep updating the graph databases. Currently, the standard

approach to identify SCC in such a network is to recompute the

SCC over the entire network every timestep, which is a costly

operation. Although there have been attempts at an adaptive

approach for other algorithms such as minimum spanning

tree [11], single source shortest path [12], [13] and vertex

coloring [14], adaptive approaches for identifying SCCs are

limited in comparison. A recent approach for adaptive SCC

detection is proposed in [15], which provides the Las Vegas

algorithm for DAGs. However, they don’t make considerations



Fig. 1: Example workflow for computing SCC on incremental graphs. At each timestep T, a new batch of updates is added

and SCC is recomputed.

for parallel or distributed scalability. Considering incremental

SCC detection is an unbounded problem, as explained in [16],

there isn’t a theoretical algorithm that solves it in polynomial

time when there are both vertex and edge updates. As a result,

we focus our work strictly on edge additions alone, keeping

the number of vertices constant.

Our key contributions are as follows:

• A novel meta-graph storage format for caching inter-

mediate SCC results after every new insertion batch.

This format gives us a reduced-size graph for computing

further SCCs after dynamic edge additions.

• DistSYNC, an asynchronous and distributed memory

algorithm for identifying new SCCs after dynamic edge

additions on the meta-graph format.

• A distributed memory implementation of DistSYNC us-

ing YGM [17], an asynchronous communication frame-

work on top of MPI.

To the best of our knowledge, we propose the first dis-

tributed algorithm for incremental SCC detection. We also

propose the first asynchronous incremental algorithm for SCC

detection. The central concept behind meta-graph storage is the

fact that we can treat identified components as meta-vertices

and traverse over them to find new components rather than

traversing every vertex in the graph. The rest of the paper is

organized into five sections. In section II, we introduce the

required background information and related works. Section

III dives into explaining the DistSYNC algorithm with the help

of examples. The implementation details and experimental

evaluations are covered in sections IV and V, respectively. The

final concludes the paper with directions for future works.

II. BACKGROUND AND RELATED WORK

Detecting SCCs in a network is a well-studied problem. This

section discusses related work on detecting SCCs in a large-

scale network. Our approach utilizes some of the concepts, so

this section also provides prerequisite background information.

A. Sequential SCC

Tarjan’s [18] implementation is the well-known sequential

algorithm for detecting SCC. It uses DFS (depth-first search),

and the complexity is O(V + E), where V is the number of

vertices and E is the number of edges. There are many attempts

to parallelize Tarjan’s approach; however, all demonstrate poor

scalability.

The Forward-Backward (FW-BW) algorithm [6] uses a re-

cursive approach. The algorithm can be described as follows:

Let V be the set of the vertices in the graph G(V, E), O(V)
be the set of all outgoing edges in the graph, and (V) set

of all incoming edges. Now for a given graph G(V,O(V)),
a random pivot vertex  is selected, and then a BFS is

performed on G(V,O(V)) from a pivot vertex  to detect

vertices (Let the set of these vertices be D) that can be reached

from . Next, another BFS is performed on G(V, (V)) from

the pivot vertex , and a backward search is done where

those vertices that can reach u are selected and inserted into

P. The intersection of D and P forms SCC, which has the

pivot element. Now from the original graph, the vertices

identified in SCC are removed, and the FW-BW approach is

recursively called on the remaining sets and the disjoint sets

obtained after removing the vertices part of SCC from D and

P. In the best-case scenario, it takes O(n logn) to detect

SCC. This approach was further improvised using trimming,

which removes the vertices with zero in-degree and out-degree.

Trimming reduces the number of vertices in FW-BW sets and

speeds up the overall performance.

B. Shared Memory SCC

Ji et al. [10] proposed a novel synchronization paradigm,

called R-sync, to spanning tree-based detecting of SCC. This

approach provides many benefits, such as early termination for

conventional bottom-up traversal. The early termination allows

them to check only a few neighbors and reduces the traversal

compared to the conventional synchronization approach.

Hong et al. [7] identified the potential limitation of the FW-

BW-Trim approach on large real-world networks. They pro-

posed an extension of the FW-BW approach, which considers

the characteristics of the dataset instances, such as the small-

world property. Their implementation was the first attempt to

develop a parallel algorithm to detect SCC and outperform the

sequential Tarjan [18] implementation. Based on the small-

world property, they have identified that wiring a few edges

in the diameter of a real-world graph can shrink its size. Their
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Fig. 2: Example for Lemmas 1 and 2. Both the right-hand sides have the same structural properties as the left-hand sides.

main idea is to expand trimming operation and decomposing

after the initial SCC is found based on partitioning on weakly

connected components.

Slota et al. [19] proposed a shared memory multistep ap-

proach that uses a parallel BFS and graph coloring. They have

used variants of FW-BW and applied Orzan’s coloring method.

To minimize synchronization, they avoid using locks. Their

experiments on real-world graphs show better scalability on

low-diameter networks. The coloring approach is also similar

to FW-BW with some modifications. Instead of just using one

pivot, it uses multiple pivots. We use this approach to perform

multi-threaded SCC within distributed processes.

C. GPU Implementation

Li et al. [20] proposed a GPU implementation of detecting

SCC using the FB-BW-Trim algorithm. They present a hy-

brid method that allows the adoption of different parallelism

strategies for various graph properties. Barnet et al. were

the first to implement the FB-Trim algorithm using CUDA.

Stuhl [21] extended the work by introducing an extended

graph traversal implementation. Sthul ran experiments on the

synthetic network and demonstrated good performance on

synthetic networks and when running on real-world networks,

except for one. The reason for poor scalability was due to

the nature of the real-world graphs and skewed component

sizes. Li et al. [20] implement a hybrid method that detects

SCC in two phases. In the first phase, the algorithm is

only focused on detecting a single large SCC. In the second

phase, the remaining small-sized subgraphs are processed. It

is shown that identifying small-sized SCCs takes more time

than identifying a single large SCC.

D. Dynamic Graphs

Attempts at getting batched/snapshot-based frameworks for

graph algorithms are explored in [22] and [23]. STINGER [24]

is a shared memory solution that can ingest structural changes

at a rate of 10 million events per second with an updating

kernel peak rate of around 1 million events per second. A

Shared memory parallel algorithm for weakly connected com-

ponents on dynamic graphs is given in [25] while a distributed

implementation is given by [26]. There have been no parallel

implementations for strongly connected components on graphs

with edge insertions, let alone distributed algorithms.

III. METHODOLOGY

Before discussing the details of the DistSYNC algorithm,

we must first explain the motivation behind this algorithm,

which stems from two lemmas on the structural property of

graphs and strongly connected components.

Lemma 1. Given two SCCs A and B, if there is a forward
edge between any vertex in SCC A to a vertex in SCC B, we
could say there is a forward path between all vertices in SCC
A to all vertices in SCC B.

Proof. If there exists a forward edge e(k, bk) ∈ E
such that SCC(k) = A and SCC(bk) = B, then

there exists a direct forward path k
Fd−−→ bk . Let,

SCC(A) = {0, 1, . . . , k, . . . , } and, SCC(B) =
{b0, b1, . . . , bk, . . . , bj}. By definition of SCC, 

Fd− →
k and bk

Fd− → by ∀, y where  ∈ [0, ] and y ∈ [0, j]
where “

Fd− → ” denotes the existence of forward path.

By transitive property, 
Fd− → k

Fd−−→ bk
Fd− → by. Thus,


Fd− → by : ∀, y SCC() = A;SCC(by) = B

In Figure 2a, there are two SCCs with labels A and B. Each

SCC has three vertices, each labeled 1 through 6. There exists

a forward edge between vertices 1 and 2 in SCC A to vertices

4 and 5 in SCC B. Since there is a forward path between all

vertices within an SCC, we can say that vertex 1 in SCC A
is reachable from vertex 3. Similarly, there is a forward path

between vertex 4 and vertex 6. This added to the fact that

there is a forward path between vertex 1 and 4 means there is

a forward path between vertex 3 and vertex 6 through vertices

1 and 4 even though there is no direct edge between them.

Because of this structural property, maintaining any other

edge across two SCCs is redundant information when identi-

fying the components. As we can see on the RHS of Figure 2a,

all the inter-SCC connections are replaced with one forward

path between the two SCCs. By doing so, we can reduce

the number of inter-SCC edges while representing the same

structural information of the graph. This lemma could be

extrapolated to any SCCs that are bigger than the provided

example as long as there is one forward path that connects

both the SCCs acting as a one-way bridge between the SCCs.



Fig. 3: Converting initial graph to meta-graph. The initial graph is shown in the leftmost part. They are then segregated into

different SCCs, which we refer to as meta-vertices. Only one representational edge that traverses two meta-vertices is converted

as a meta-edge while the rest is discarded. We finally get a meta-graph with three meta-vertices and three meta-edges

Lemma 2. Given two SCCs, A and B, if there is a forward
and backward path between them, then the vertices in both
the SCCs could be merged into a single component.

Proof. Let S1 = {0, 1, . . . ƒ , . . . b, . . . m} ∈
SCC(A), S2 = {b0, b1, . . . bƒ , . . . bb, . . . bn} ∈
SCC(B) : ∀, b ∈ V.

Given eƒ (ƒ , bb) ∈ E : ƒ
Fd−−→ bb(direct forward path)

also, eb(bƒ , b) ∈ E : b
Bd←−− bƒ (direct backward path)

Now, ∀ ∈ [0,m]


Fd− → S1 ∪ S2 S1 by definition of SCC; S2
through eƒ and Lemma 1


Bd←− S1 ∪ S2 S1 by definition of SCC; S2

through eb and Lemma 1
Similarly,∀y ∈ [0, n]
by

Fd←→
Bd

S1 ∪ S2 “
Fd←→
Bd

” denotes existence of

path from both direction

Therefore, 
Fd←→
Bd

by
Hence, we can merge A and B into single SCC C such that

C consists of all vertices in S1 ∪ S2
On the LHS of Figure 2b, there are two SCCs with three

vertices, each labeled 1 through 6. We can see that there is

a forward path from vertex 1 to vertex 4 while there is a

backward path to vertex 3 from vertex 6. Once again, from

both the fact that there is a forward path between any two

vertices within the same SCC and there is a forward and

backward path between the two SCCs, we can say there is

a forward path between any two vertices from both the SCCs

and hence all the vertices belong to the same SCC. This is

represented on the right side of Figure 2b.

By applying Lemma 2, we can represent two SCCs residing

in different processes as a single component, thereby reducing

the unique components we need to represent the same struc-

tural information of the graph. Like Lemma 1, this can be

extrapolated to any number of SCCs of any size as long as a

forward and backward path exists among them.

A. Meta-graphs

We introduce the meta-graphs G′′(MN,ME) as an abstrac-

tion on top of the existing graph where the vertices (referred

to as meta-nodes(MN) or meta-vertices), are the SCCs. The

edges of G′′, which are referred to as meta-edges(ME), are

the directed edges that connect two meta-vertices. They are

created by first identifying the various SCCs in the original

graph. These SCCs act as the meta-vertex, with each meta-

vertex comprising all the vertices that belong to that SCC.

From lemma 1, we know that for computing SCC, when

multiple redundant edges traverse two different SCCs, then

they could be represented using a single edge while still

holding on to the same structural property. Thus a single

representational edge that traverses the two SCCs/meta-vertex

is chosen as the meta-edge while the rest is discarded.

We take into account the direction of the edge so that

only edges that traverse in the same direction are considered

redundant, and a representational edge is picked from them.

Meta-graphs are much smaller than the original graph because

all the vertices belonging to an SCC can be represented using

a single label (color). For instance, the original graph with 18

vertices and 23 edges in Figure 3 is converted to a meta-

graph with three meta-vertices and three meta-edges. It is

also to be noted that initially, a meta-graph is directed and

acyclic (DAG), as multiple SCCs that form a cycle cannot

exist without being absorbed into a single SCC. We will be

leveraging this fact to overlay dynamic edge additions on

top of this meta-graph to see if new cycles are formed to

identify updated SCC. Storing graphs in a meta-graph format

enables us to recompute the SCC on a reduced-size meta-graph

rather than the larger original graph. Also, a lot of real-world

graphs consist of many large SCCs, which in turn could be

represented using a single label. Hence, meta-graph abstraction

drastically reduces the size of these graphs. This is one of the

key factors for the improved performance of our algorithm.

B. Forward color propagation and backward confirmation
messages

Forward color propagation sends the color of a pivot meta-

vertex to its next neighbors, along with the accumulated size

of all the meta-vertices in that chain originating from the pivot.

These are implemented as functions that can be executed by

the neighbor vertex using a remote procedure call (RPC). The

neighbors recursively keep calling that function and pass it

further to their neighbors until the base condition is reached.

This is a mechanism we will use in DistSYNC to identify

whether a chain is a cycle. Likewise, backward confirmations

are recursive messages sent to the previous sender of a forward

color propagation message notifying the presence of a cycle

for that chain along with its total size. Meta-vertices asyn-

chronously fire these messages to destination meta-vertices

when they are asked to and go on to wait for further messages.



C. DistSYNC

The critical steps in our distributed algorithm for SCC

are bookkeeping the forward and backward messages sent

from different pivots. Figure 4 explains the workflow of our

algorithm using a sample graph with four initial SCCs, denoted

by four colors, which we partitioned across two distributed

ranks. The four components are denoted using the starting

letters of their respective colors, namely, R,G,B, Y . It is

to be assumed that the vertices within the same color are

interconnected, but for convenience, we show only the edges

that go across different colors denoted by a single arrow.

Newly updated edges that arrive in the first time step are

denoted by dotted arrows. We can see that in the initial phase,

there are two existing edges, RG and GB, along with two

updated edges, BR and BY .

In phase one, we build a meta-graph with four meta-vertices

denoting the four colors and four meta-edges denoting the

new and existing edges between them. Then to trigger the

start of forward checks in phase two, all the meta-vertices

that are a source to a newly updated edge that traverses to

another meta-vertex are considered pivots. They then forward

propagate their colors and size to the respective destination

meta-vertex. In Fig 4, the solid yellow connectors denote the

forward propagation through BR and BY as they are newly

updated meta-edges. R, upon receiving a propagated message

from B, forwards that same color downstream to G along with

the combined size of both of them. This is shown in fig 4 with

a solid yellow connection RG. Throughout the forward chain,

everyone propagates the pivot color along with the updated

size in the chain. When B receives a forward message from

G with itself as the pivot, it recognizes that it is a cycle. When

a cycle is detected, it checks if its current size is less than the

size of the chain and triggers a backward confirmation to the

sender of that message. In this case, the size of the chain is

16, which is greater than that of B. So B updates its colors

and triggers a backward confirmation with the new size to

G, which in turn does the same to R. So R and G are now

essentially subsumed by B, with 16 being their new size.

A case where the own size of the meta-vertex is greater than

the size taken from the backward confirmation message could

only happen if that vertex has been updated to a new color

after it sent out the previous forward message. In that case,

it doesn’t propagate backward confirmation but instead asks

the successor who sent the backward confirmation to revert to

its previous state. By that point, it would already have sent

forward propagation messages with the new chain sizes and

pivot.

The algorithm terminates when there are no more forward,

backward, or revert messages to send through the entire

network, which would mean every meta-node is correctly

updated to reflect the new component it belongs to and the

new size. Individual forward, backward, and revert messages

with different pivots would flow back and forth through the

network until everyone hits a stable state and there are no

more new messages. Since this is completely asynchronous,

none of the meta-vertices wait in anticipation of a backward

confirmation after a forward check. The meta-vertices process

these messages as they are received and go back to listening

for further messages until the algorithm terminates.
In essence, DistSYNC is an extended version of cycle detec-

tion but over a meta-graph. Detecting cycles are expensive, but

we highlight two key advantages that ensure that DistSYNC

is efficient. Since it operates over a meta-graph, the number

of edges it traverses to detect a cycle is dramatically reduced.

Also, the number of pivot points that trigger forward checks is

limited to only the meta-nodes that have newly updated meta-

edges. This number is dependent on the size of the update

batch; a larger batch means more pivot points that slow down

the entire process, as we discuss in Section V, but we can

cleverly partition the update batch to maximize efficiency.

In the worst case, every meta-edge can be traversed to find

the cycle giving it an amortized time and communication

complexity of O(MV +ME). Due to the usage of distributed

hash tables from YGM, each process only stores the meta-

vertices that belong to it. Hence the space complexity is

O((V + E)/N) where N is the number of processes.

Algorithm 1 Forward and backward propagation

1: procedure CHECKFORWARD(pot, sz)

2: if seƒ == pot then
3: if sz > sze then
4: sze = sz
5: Forrdsender
−→ConfirmBackward(pot, sz)

6: end if
7: end if
8: if seƒ != pot then
9: sz= sz + sze

10: for Each forward neighbor y do
11: y −→CheckForward(pot, sz)

12: end for
13: end if
14: end procedure
15: procedure CONFIRMBACKWARD(pot, sz)

16: if sz > sze then
17: coor(seƒ ) = coor(pot)
18: sze = sz
19: Forrdsender
−→ConfirmBackward(pot, sz)

20: end if
21: if sz < sze then
22: conƒ rmtonsender −→Revert(pot)
23: end if
24: end procedure
25: procedure REVERT(pot)
26: revert to the previous state

27: conƒ rmtonsender −→Revert(pot)
28: end procedure

Algorithm 1 explains the procedures required for forward

and backward propagation, respectively, while algorithm 2
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Fig. 4: Example workflow of DistSYNC. The initial meta-graph is shown in (a) with four different SCCs/meta-vertices split

across two ranks p1 and p2. Blue forward propagates its color to yellow and red based on the updated edge in (b). In (c), red,

in turn, propagates blue forward to its neighbor green. Green changes its color to blue and confirms it backward to red in (d).

Red does the same and propagates it backward to blue. Now everyone in the cycle is blue.

puts everything together and explains the full DistSYNC

algorithm. An arrow denotes a remote-procedural call where

the sender asks the LHS of the arrow to execute the function

on the RHS with the given arguments. After constructing

the initial meta-graph, every process spawns a non-blocking

listener thread to receive forward and backward messages from

other processes. This is shown in lines 1-3 in algorithm 2.

Meanwhile, the application thread skips to line 4 and initiates a

forward check for all newly updated meta-edges. The forward

check is done in lines 1-14 of algorithm 1.

Algorithm 2 DistSYNC

Require: list of meta-edges ME and meta-nodes MN

1: for All meta-nodes ∈ MN do
2: Listen to forward or backward message

3: end for
4: for each edge , y ∈ ME do
5: if Meta-edge , y is new then
6: y −→CheckForward(, sze) � x asks y to

execute CheckForward

7: end if
8: end for
9: Barrier()

When a destination meta-vertex receives a forward check

message, it propagates that color and updated size to all its

immediate neighboring meta-vertices. In lines 1 and 2 of

Algorithm 1, a meta-vertex checks if it is the received pivot

and if the size is bigger than itself, which determines that a

cycle is detected. If so, it triggers a backward confirmation in

line 5. If its size is greater than the received size, it means

that it has since been updated, so it doesn’t send a backward

confirmation. If the meta-vertex is not a pivot, it just routes

the forward message to its neighbors with the updated size

shown on line 11.

IV. IMPLEMENTATION

This section will go over the details of implementing

DistSYNC algorithm with the design choices and selection

of data structures for the most efficient approach. The dis-

tributed algorithm was implemented in C++ using YGM, an

asynchronous communication framework with a built-in suite

of distributed data structures. YGM uses MVAPICH under the

hood for scaling the application across distributed processes.

A. Partitioning

This step may not be a part of the two phases of DistSYNC,

but it is essential that the graph is partitioned efficiently by

avoiding load imbalance and minimizing inter-process com-

munication. For partitioning the input graph, we use ParMetis

[27], a multi-way partitioning library. ParMetis internally uses

Kernighan-Lin algorithm [28] which allocates partitions to

vertices such that the number of inter-partition edges is mini-

mized, i.e., the inter-process communication load is reduced.

B. YGM

The presence of non-uniform communication patterns in

large-scale graph algorithms makes regular MPI an inefficient

framework for this algorithm. Also, the absence of distributed

data structures like hash maps and sets makes it hard to

code complicated distributed algorithms. For these reasons,

we chose to use YGM as our base framework. YGM uses

RPC-style fire-and-forget semantics for its communication

interface. Messages in YGM have three basic components:

a function to execute, arguments to pass to the function,

and an MPI rank at which to evaluate the function. The

procedures for forward and backward checks are encapsulated

into asynchronous messages and fired to a destination rank

that holds the receiving meta-vertex. The destination rank

receives that message and executes that procedure with its

arguments. In this particular case, the CheckForward() and

ConfirmBackward() procedures from algorithm 1 are sent as

asynchronous RPC messages.

The fact is that DistSYNC, like any graph algorithm,

generates large numbers of small messages. Hence, YGM

provides message buffering capabilities that bundle together

multiple small messages between a sender and receiver to

reduce the total number of remote MPI messages underneath

and thus improve bandwidth. Lastly, to communicate non-fixed



width data structures, YGM serializes the structured messages

to variable length byte arrays. This gives us the flexibility of

communicating complicated structures without having to take

a performance penalty.

C. Initial SCC computation

Initially, each process needs to compute the local SCCs

of its allocated subgraphs. For computing the initial SCCs,

we use Multistep [19], a shared memory implementation that

uses a combination FW-BW-Trim and their novel BFS coloring

algorithm. It is implemented in C++ with OpenMP directives,

and we created a wrapper module to interface Multistep within

our framework. It takes in an edge list representation of

the allocated subgraph and produces a vector with indices

representing the vertex IDs and SCC IDs as values.

D. Data stuctures

To perform DistSYNC algorithm for dynamic graphs, we

need to accurately track forward and backward meta-edges

from every meta-vertex. But these vertices would reside across

different ranks, so traditional data structures would not be

sufficient. For this purpose, we make use of the suite of

distributed data structures provided by YGM. In specific, we

use distributed hash maps and hash sets. YGM internally stores

these tables across many ranks and provides constant time

lookup for every entry into the map. If a process tries to look

up a particular key that isn’t stored in that process, it queries

the other process that holds that key and returns its value. This

seamlessly happens underneath while the interface provides a

global view of that hash table and hence enables every process

to look up every key-value pair of the distributed map.

The color associated with each vertex is stored in a YGM

hash map accessible by every process. The list of neighbors

for every meta-vertex is also stored in YGM hash map. This

lets each process forward and backward propagate colors to its

neighbors by looking them up in constant time with at most

two hops. Lastly, every process builds a set of all forward

propagated colors it received. Hence, when it receives a

backward propagated color, it checks this set for an equivalent

match and updates its color if it finds one. This is a way of

checking forward and backward paths before updating colors.

V. EXPERIMENTAL EVALUATION

In this section, we will discuss the results from running

distributed experiments starting with the strong scaling results

in comparison with the iSpan [10] as the baseline. Then we

compare the speedups of DistSYNC with varying batch sizes

of dynamic updates. Then lastly, we discuss the performance

metrics of DistSYNC using YGM, including average memory

utilized and interprocess communication bandwidth.

A. Experimental setup

We ran the distributed experiments on Intel Xeon dual E5-

2690v4 processors with 28 cores per node. The timing for

these experiments is recorded after the creation of initial meta-

graphs to recompute the SCC for a dynamic batch of edge

additions. For our benchmark datasets, we used four real-world

graphs; Flicker (Fl), Facebook (Fb), Orkut (Or), and Roadnet-

USA (Rusa), along with two synthetic graphs; RMAT26

(R26) and RMAT27 (R27). The RMAT was generated with

the probabilities (a=0.45, b=0.15, c=0.15, d=0.25) and scale-

free degree distribution. Table I gives more details about the

datasets.

The baseline iSpan is not a dynamic model that can handle

batches of updates; hence, in the iSpan experiments, we

recompute the SCC over the entire graph, i.e., the initial graph

plus the update batch. This is currently the only available way

to compute distributed SCC on incremental graphs. The graph

properties give us an idea of how big the meta-graphs will

be. For example, larger SCCs would mean more vertices can

be grouped under a single meta-vertex and, in turn, reduce

the total number of meta-vertices. This reduction in the total

number of SCCs enables us to create a meta-graph that is

much smaller than the original graph and hence significantly

reduces the cost of recomputing SCC.

B. Performance

The first and primary metric for analyzing performance

is strong parallel scaling. Figure 5 shows the strong scaling

results of DistSYNC and iSpan for a single-threaded imple-

mentation of Tarjan’s algorithm. DistSYNC scales well, with

max speedups ranging from 8x to 28x for all graphs on up to

64 processes. In comparison, iSpan scales with max speedups

ranging from 6x to 9x. DistSYNC is also able to outperform

iSpan in all but one dataset, namely, Roadnet-USA(Rusa), with

its speedups flatlining at 8x. This is because the size of the

largest SCC is significantly smaller, and the number of SCCs

is large. This dataset essentially has a lot of small SCCs. This

means the meta-graph also has a lot of meta-vertices, thereby

reducing the impact of constructing a meta-graph.

DistSYNC performs at its worst when the original graph

consists of many small SCCs, but those types of graphs are

much rarer because of the small-world property of graphs, as

explained in [7], where vertices of real-world graphs usually

cluster together to form few large SCCs followed by several

medium to small SCCs.

Apart from the number of SCCs, the other factor influencing

the performance of DistSYNC is the size of the update batches.

Figure 6 shows us the speedups of DistSYNC and iSpan at 32

nodes when varying the size of the update batch. The X-axis

denotes the percentage of the initial batch size. For instance,

20% of the batch of edges are kept for updates while the

remaining 80% are added to the initial graph to keep the

overall size constant. We perform these experiments on 20,

40, 60, and 80% batch sizes.

We observe that DistSYNC is at its fastest for smaller

update batch sizes, and the speedup gradually decreases as we

increase the batch size. This is because at smaller batch sizes,

the number of new edges to be added is less, and hence fewer

forward and backward messages are triggered by each process.

We note that the overall size of both batches combined remains



TABLE I: Details of benchmark datasets

Dataset Initial edges # of edges in update # of SCCs Largest SCC size Best iSpan time(MS) Best DistSYNC time(MS)
Flicker(Fl) 1,151,463 1,158,925 487,659 9,752 21.3 6.24
Facebook(Fb) 67,255,691 67,255,782 1,576,432 963,487 230.4 98.2
Orkut(Or) 122,346,784 122,346,157 2,975,565 1,865,468 349.11 146.52
Roadnet-USA(Rusa) 93,568,872 93,568,112 3,501,682 443,923 248.6 279.4
RMAT26(R26) 67,108,864 67,107,927 1,136,282 1,082,223 215.6 75.4
RMAT27(R27) 734,217,728 734,279,598 9,987,245 92,742,613 2472.7 733.4

(a) Fl (b) Fb (c) Or( )
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Fig. 5: Speedups for DistSYNC(blue) and baseline iSpan(red) with respect to single-threaded Tarjan’s implementation.

constant. Only the allocation of edges between the initial batch

and the updated batch varies.
In contrast, the performance of iSpan remains fairly constant

across all batch sizes as the size of updates will not influence

it, considering it is not a truly dynamic model and recomputes

the SCC for the entire graph every time there is a new batch.

We perform this set of experiments to elucidate the benefits

of using a dynamic algorithm for graphs with incremental

updates. These benefits are amplified further when there is

more than one iteration of updates because, for every iteration,

only the new batch of meta-edges will be considered for pivots

while the previous iterations will be baked into the meta-graph.

This is unlike any of the currently available state-of-the-art

parallel SCC algorithms where the entire graph, along with

incoming updates, needs to be recomputed for every update.

C. Memory Utilization
Distributed implementations always have the added ad-

vantage over shared memory implementations of reducing

memory utilized per process to perform massive-scale com-

putations. In this section, we highlight memory utilization

to demonstrate the benefits of using YGM as the distributed

substrate for DistSYNC. Figure 7 gives us the average memory

utilized per process as we increase the number of processes.

We can see that for all the datasets, the average memory

utilized decreases fairly consistently as we scale up. A signif-

icant contributor to this decrease is the use of distributed data

structures provided by YGM. Considering DistSYNC uses

hash tables to keep track of forward and backward connectivity

for each vertex while using hash sets to keep track of all

vertices in a meta-vertex, the number of hash entries can be

significant if we use a traditional hash table. The YGM hash

table stores only entries of vertices that belong to that process,

while looking up external entries by exchanging messages

between the processes. This is seamlessly handled under the

hood by YGM, while all the entries appear as one unified hash

table for the user. To the best of our knowledge, the state-of-

the-art iSpan replicates the entire graph on all the ranks, so

memory utilization doesn’t scale with increasing ranks.
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Fig. 6: Speedup on 32 cores with varying batch sizes for DistSYNC(blue) and baseline iSpan(red) with respect to single-

threaded Tarjan’s implementation.
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Fig. 7: Average memory utilized per process as the number of processes increases.
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Fig. 8: Reduction in the number of MPI messages by

coalescing in YGM.

D. Message coalescing

YGM also enables us to coalesce multiple messages be-

tween two processes and send them as a single message.

These messages are stored in a fixed-size 512 Kb buffer in

each process. When the buffer is filled up or when it is

forced to flush, it is sent to the destination process, which

handles all the incoming messages. These messages are usually

forward or backward check messages that contain individual

lookups of vertices in hash tables. Since these are extremely

small messages, sending them individually in MPI would

significantly increase the total number of remote communi-



cations and result in poor bandwidth utilization. The order

in which these messages are handled wouldn’t matter, as this

is a completely asynchronous algorithm. At worst, a process

would start checking the backward path while still waiting

for confirmations on forward paths from other processes, in

which case, it would simply have to trigger a new forward

check once it is updated.

Figure 8 shows the reduction in the number of MPI mes-

sages by coalescing small messages in YGM. In the Orkut

graph, the difference is amplified as it consists of a relatively

small number of densely packed meta-vertices that frequently

communicate with a small subset of processes. Coalescing

these messages ensures the buffers are filled before sending

it as an MPI message. Likewise, Roadnet-USA has the least

difference due to its relatively large number of meta-vertices

communicating with a larger subset of processes and hence

sending sparse buffers before filling them fully. As a result, the

total number of messages is increased. This is another reason

why DistSYNC is less performant for many small SCCs.

VI. CONCLUSION

This paper introduces DistSYNC, an asynchronous algo-

rithm leveraging distributed, multithreaded CPU parallelism

for identifying Strongly Connected Components(SCC) in in-

cremental networks with edge additions. We have also sup-

ported the algorithm with the implementation details of the

distributed framework. We show that our approach can offer

performance speedups of up to 30x over single-threaded

Tarjan’s implementation and up to 2.8x over the state-of-the-

art. In the future, we plan to extend DistSYNC with edge

deletions. We are also working on caching meta-graphs in

persistent memory like NVMe ssd. This would enable us to

read and write meta-graphs much more quickly in between

each timestep for efficient recomputation.
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