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Abstract—In order to meet the increased computational de-
mands and stricter power constraints of modern applications, ar-
chitectures have evolved to include domain-specific accelerators.
In order to design efficient accelerators, three main challenges
need to be addressed: compute, memory, and control. Moreover,
since SoCs usually contain multiple accelerators, selecting the
right one for each task also become crucial. This becomes
specially relevant in Flexible Processing Units (xPUs), processing
units that provide multiple functionalities with the same hard-
ware. While it is possible to use shared support components
for all functionalities, this will lead to sub-optimal performance.
In this work, we take one example of such xPU, and analyze
the aspects which have not yet been fully addressed, showing
that there is more potential to be exploited. By understanding
the required memory patterns, we can achieve up to 72%
speedup gains compared to using the memory support optimized
for a different functionality. Furthermore, we propose an in-
depth analysis of the different functionalities provided by the
xPU. We then leverage the insights obtained from this analysis
by providing a mechanism that selects the right functionality,
maximizing hardware utilization.

Index Terms—Flexible Processing Unit, Vector Unit, Systolic
Array, GEMM, DNN, Scientific Computing

I. INTRODUCTION

In recent years, the landscape of computer architecture

has been characterized, among others, by diminishing returns

from technology scaling and power density limitations. Ad-

ditionally, application requirements are increasing faster than

before [1]. To bridge that gap, processors are shifting from

homogeneous multi-cores composed of general-purpose CPUs

to heterogeneous System-on-Chip (SoC) designs. These SoCs

integrate one or more Domain-Specific Accelerators (DSAs)

coupled with the host CPU(s) [2]. This way, systems can

offer the required performance while fulfilling the power bud-

get. Consequently, multiple DSAs have been proposed, both

in academia and in industry, targeting different application

domains, such as Deep Neural Networks (DNNs) [3]–[9],

graphs [10]–[12] and bioinformatics [13], [14].

When it comes to designing accelerators, one needs to

address three main challenges: (1) compute, (2) memory, and

(3) control. First, the compute units need to be efficiently
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implemented. Moreover, they need to be accompanied by

an efficient data flow, that maximizes data reuse within the

computational parts of the system. Second, the memory system

needs to feed data at the required rate to the compute units, en-

abling maximum performance and utilization. To achieve this,

the memory system must be designed around the data patterns

required by the compute units and their dataflow. Third, there

is a need for an efficient control of compute and memory to

achieve maximum performance and efficiency. Furthermore,

the system needs to provide a way to select the best matching

accelerator to use. Otherwise, performance may be penalized

due to inefficiencies, such as considerable resource under-

utilization. Selecting the best matching accelerator can be

trivial in cases where the differences between accelerators are

clear. However, this becomes increasingly difficult if different

accelerators can efficiently compute the same application or

core kernel within the application. In this case, the point when

one accelerator starts to outperform the other may not be clear.

Thus, a more in-depth analysis is required. One example of

this situation is the General Matrix Multiplication (GEMM).

This kernel, key in multiple compute-intensive applications,

such as Deep Neural Networks (DNN), can be efficiently

computed by either Systolic Arrays (SAs) [7], [15] or Vector

Processing Units (VPUs) [16]–[19]. While SAs are typically

a better option, as they are explicitly designed to compute

GEMM, performance can be worse than expected due to

under-utilization of their compute units [20].

Nowadays, there are multiple systems, both in industry and

academia, that combine SAs and VPUs in different ways:

separate SA and VPU units such as in Google’s TPU (v2 on-

wards) [21], or combined SA and VPU such as in the Vector-

Systolic Architecture (VSA) [22]. VSA does not present

two different architectures but rather a single heterogeneous

architecture that can behave as both a VPU and an SA. To do

so, the available resources in a given baseline VPU are reused

to implement a SA with minimal hardware overhead. This

way, it is not just a VPU or a Matrix Multiply Unit (MMU)

(a name typically given to architectural components based on

an SA for GEMM computation). Instead, it can be defined

as a Flexible Processing Unit (xPU), which uses the same

hardware to offer different functionalities. However, while [22]

has addressed the computational part and extended the baseline

VPU’s control logic, less emphasis has been placed on both

the memory system and the decision-making.

In this work, we will analyze these two missing points to

further exploit the potential of such a xPU. In particular, this
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Fig. 1. Block diagram for the VSA xPU. The elements added to the VPU
baseline are highlighted in golden color.

work presents the following contributions:

• A set of custom memory access instructions to support

SA-like patterns in VPU memory systems.

• A partitioning schema analysis for improved utilization

of vector and systolic functionalities in the VSA xPU.

• A quantitative performance analysis of the enhanced VSA

for DNN inference models and scientific applications.

We have prototyped and deployed both the VPU baseline

and the VSA xPU into an FPGA using HLS. We have

observed speedup increases of up to 72% thanks to the

new memory instructions. In addition, we have proposed an

analysis methodology to evaluate utilization and used the

gained insights to maximize this parameter.

II. BACKGROUND AND MOTIVATION

In this section we discuss the VSA xPU, how it merges a

SA and a VPU into one hybrid architecture, how to compute

GEMM using either SA or VPU, and what could be improved.

A. A Hybrid Vector-Systolic Architecture

In recent years, SAs and VPUs have been implemented to-

gether in different systems, to leverage the advantages of both

architectures. Moreover, as more of these systems were being

designed, the overlapping degree between both architectures

got closer and closer. This has been taken to the extreme

in [22], where it was shown that starting from a baseline VPU,

it is possible to create a unit that can behave as a SA for

GEMM with minimum hardware overhead, as shown in Figure

1. This is a Flexible Processing Unit, or xPU, a processing unit

that provides different functionalities using the same hardware.

This way, this novel xPU architecture can behave both as a

SA (xPUSA), or as a VPU (xPUVPU). Following [22], here we

also focus on an output stationary implementation of the SA.

Nowadays, VPUs provide parallelism in three different

ways [17]–[19]: (1) by working with a Vector Register File

(VRF) instead of with scalar registers, (2) by leveraging the

full datapath width using packed SIMD, and (3) by instanti-

ating multiple lanes inside a VPU. xPUSA, leverages all these

parallelism levels: (1) the vector register is used to emulate

the input streams, (2) packed SIMD determines the column
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Fig. 2. Behaviour of the SA

parallelism, and (3) multiple lanes are used to emulate the

multiple rows of the SA. The values are initially stored in the

VRF. Rows of the first matrix are stored in the VRF slice

of the corresponding lane. Columns of the second matrix are

stored in the VRF slice of the first lane. This way, this xPU

can remap the functional units available on the baseline VPU

as shown in Figure 2. This results in a SA with sizes SR×SC,

being SR the number of rows and SC the number of columns.

In order to choose between xPUSA and xPUVPU, [22]

proposed to extend the existing RISC-V vector extension [23],

with an instruction that forces the VPU to run as a SA. This

instruction can be represented by the mnemonics vsa for

integer and vfsa for floating point data types.

B. GEMM

GEMM, which stands for General Matrix Multiply, is a

fundamental linear algebra operation used in a wide range

of scientific and data analytic applications, as well as in the

field of Deep Learning (DL). In this last field, GEMM is the

core kernel of DNN models. Example applications that use

it are Finite Element Solvers (FES), such as [24]. GEMM

can also be used to compute 2D convolution [25], one of the

core kernels in image processing. Moreover, this has been

integrated with DL, and nowadays the 2D convolution is

the core kernel of Convolutional Neural Networks (CNNs).

However, CNNs are not the only type of DNNs that use

GEMM, as it is also used in transformers [26], and it can

compute the dense or fully connected layers.

While GEMM is defined in BLAS as C[M,N ] = α ×
A[M,K] × B[K,N ] + β × C[M,N ] [27], we focus on the

matrix operations. Thus, in this work GEMM is computed as

C[M,N ] = A[M,K]×B[K,N ] + C[M,N ].

1) GEMM with xPUSA: In this xPU, the initial idea is to

use xPUSA for this kernel, as this is the purpose of adding the

SA. Therefore, GEMM can be computed with xPUSA using

the custom vsa/vfsa instruction as shown in Algorithm 1.

2) GEMM with xPUVPU: GEMM is a highly vectorizable

kernel, and thus, it is suited to be efficiently offloaded to a

vector processor. Thus, it can also be computed by xPUVPU,

as it retains all the functionality of the baseline VPU. A



Algorithm 1 Computing GEMM with xPUSA

1: SET DATA WIDTH(D)
2: v idx a = GEN IDX A()
3: v idx b = GEN IDX B()
4: v idx c = GEN IDX C()
5: for all i ∈ {1, . . . ,M/SR} do
6: v a = LOAD IDX(v a, v idx a)
7: for all j ∈ {1, . . . ,N/SC} do
8: v b = LOAD IDX(v b, v idx b)
9: v c = LOAD IDX(v c, v idx c)

10: v c = vsa/vfsa(v a, v b, v c)

11: STORE(v c)
12: end for
13: end for

basic vectorized algorithm for computing GEMM is shown

in Algorithm 2 (.vs indicates a vector-scalar instruction).

C. Motivation

While the original VSA paper efficiently merges both ar-

chitectures with minimal hardware overhead and extends the

control to decode and handle the new instruction, this is not

enough to exploit the maximum performance from an xPU, as

described before.

1) Memory: An efficient use of new architecture requires a

way to efficiently feed it with input data. To this end, xPUSA

requires different data patterns compared to xPUVPU, and thus

it is needed to adapt to them. The original paper proposes two

options: (1) assuming there is a scratchpad that can provide

the correct patterns, or (2) using indexed memory accesses.

While the former would need extra hardware support, the

latter is inefficient. Out of the three memory access modes

supported in vector ISAs such as RISC-V (unitary, strided, and

indexed) [23], indexed memory accesses are the least efficient

ones. Instead of using a defined regular pattern, they take

as extra input a vector register containing the offsets to the

corresponding base address. Thus, a way to support the new

patterns required by xPUSA should be researched.

2) Mode selection: In the VSA xPU, the problem is no

longer choosing between two different accelerators. Rather, it

implies choosing between two different modes in the same

accelerator. However, the decision-making problem is still

present. This is especially relevant in the case of GEMM, as

both xPUSA and xPUVPU can compute this kernel. While the

first intuition would be to compute it with xPUSA, the original

paper showed that this intuition is wrong in some cases.

Therefore, we should understand under which conditions each

mode is better.

III. MEMORY ANALYSIS

In the VSA xPU, both xPUSA and xPUVPU use the same

memory system: a VRF connected to L1 or directly to L2. So

xPUSA still uses the memory support designed for xPUVPU.

Thus, there is potential for improvement in this area.

Algorithm 2 Computing GEMM with xPUVPU

1: for all i ∈ {1, . . . ,M} do
2: v c = LOAD ROW(C,M)
3: for all j ∈ {1, . . . ,K} do
4: a = A[ i×K + j ]

5: v b = LOAD ROW(B,K)
6: v c = vfmacc.vs(a, v b, v c)

7: end for
8: STORE(v c)
9: end for

A. Maximizing VRF utilization

The first point to notice is that, with the values of matrix

B being stored only in the VRF slice of the first lane, the

slices of the other lanes are not being utilized. Moreover, to

balance the dataflow, the slices keeping the rows cannot be

fully utilized either. In this approach, the first lane acts as the

data source, while the last lane acts as the sink.

One way to solve this would be to continue storing the

columns in the following lanes. When all the elements of

matrix B in the first lane have been used, the second lane

starts behaving as a data source. After getting to the last lane,

the elements will continue to the first one, acting now as a sink

instead of the last one. This process will continue until lane

N−1 behaves as the weight source and lane N−2 does so as

a sink. This way, vector register utilization can be maximized.

B. Data pattern description

With a new functionality, new memory access patterns

appear. In particular, the element placement inside the VRF

has to exhibit specific patterns, required by xPUSA so that the

right element arrives at the right functional unit at the right

time. These patterns, which differ from the ones that VPUs

are designed for, are shown in Figure 3, and are described as:

1) For matrix A, in each lane, the corresponding vector

register slice shall contain the corresponding row of A,

up to P , which is the maximum amount of elements that

can be pipelined for the execution of one instruction.

2) For matrix B, all the elements shall be placed first in

the first lane, and then continue filling the lanes in order

until the last lane is full. The amount of elements of the

same column that fit in the vector register slice of one

lane determines the maximum P .

3) For the output matrix, each lane will contain the corre-

sponding row of the tile.

C. Data pattern implementation

To achieve these patterns without memory support, the only

option is to use vector-indexed memory accesses. We exclude

rearranging the data in memory, which would incur in time

and memory overheads, and having extra hardware support to

do this rearrangement. To use indexed memory accesses, the

corresponding index vectors need to be generated. Pseudocode

for generating the said indices for matrices A, B and C is

shown in Algorithms 3, 4 and 5 respectively. From these
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(a) Reference indices in VRF

[0,0] [0,1]
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...

[0,31]

[1,0] [1,1] [1,31]

[2,1][2,0] [2,31]

[3,0] [3,1] [3,31]

(b) Matrix A in memory

[0,0] [0,1] [0,2] [0,3]

[0,4] [0,5] [0,6] [0,7]

[0,28] [0,29] [0,30] [0,31]

...

[1,0] [1,1] [1,2] [1,3]

[1,4] [1,5] [1,6] [1,7]

[1,28] [1,29] [1,30] [1,31]

...
[2,7][2,6][2,5][2,4]

[2,3][2,2][2,1][2,0]

[2,28] [2,29] [2,30] [2,31]

...

[3,0] [3,1] [3,2] [3,3]

[3,28] [3,29] [3,30] [3,31]

[3,4] [3,5] [3,6] [3,7]

...

(c) Matrix A in VRF

[0,0] [0,1] [0,2] [0,3]

[1,0] [1,1] [1,2] [1,3]

...
[31,0] [31,1] [31,2] [31,3]

(d) Matrix B in memory

[0,0] [0,1] [0,2] [0,3]

[1,0] [1,1] [1,2] [1,3]

[7,0] [7,1] [7,2] [7,3]

...

[8,0] [8,1] [8,2] [8,3]

[9,0] [9,1] [9,2] [9,3]

[15,0] [15,1] [15,2] [15,3]

...
[17,3][17,2][17,1][17,0]

[16,3][16,2][16,1][16,0]

[23,0] [23,1] [23,2] [23,3]

...

[24,0] [24,1] [24,2] [24,3]

[31,0] [31,1] [31,2] [31,3]

[25,0] [25,1] [25,2] [25,3]

...

(e) Matrix B in VRF

[0,0] [0,1] [0,2] [0,3]

[1,0] [1,1] [1,2] [1,3]

[2,3][2,2][2,1][2,0]

[3,0] [3,1] [3,2] [3,3]

(f) Matrix C in memory

[0,0] [0,1] [0,2] [0,3]

...

[1,0] [1,1] [1,2] [1,3]

...

[2,3][2,2][2,1][2,0]

...

[3,0] [3,1] [3,2] [3,3]

...

(g) Matrix C in VRF

Fig. 3. Memory and VRF patterns for a VPU with 4 lanes, 4 elements per lane and MVL that fits 128 elements

algorithms, we can observe that said patterns are not trivial to

vectorize for a traditional VPU architecture. Finally, only one

different index pattern per matrix is needed. This is because,

once a pattern is described as an index vector, given different

base addresses, the generated indexes can extract the same

pattern from different starting positions, thus not being needed

to regenerate it every time.

While it is possible to use the xPUSA with indexed memory

accesses, this type of access is the least efficient among the

available ones. Moreover, in this case, they fail to adequately

capture locality due to the write order. However, understanding

the previously mentioned requirements, it is possible to realize

that there is indeed spatial locality to be leveraged. Regarding

matrix A, it is clear that we are loading SR rows, each of

them to a different lane, with a unitary stride. To leverage

this locality, the approach would be to load first all the

elements from the first row in the first lane, then the ones

from the second row in the second lane, etc., via independent

instructions. Moving on to matrix B, here all the values are

loaded first into the first lane and, once it is full, it moves

to the following one. Comparing with A, it is possible to see

a trend where the VSA xPU would benefit if values could

be accessed on a lane-by-lane basis. Focusing on the specific

lane, the different columns of matrix B are loaded on a row-

by-row basis, i.e., it takes packs of SC elements of each row,

corresponding to the columns to be streamed. This pattern

could be done by reading SC elements, and then jumping with

a stride of N , to fetch the column elements of the next row.

However, this would imply the need for another instruction

for expressing that specific increase pattern. It would require a

combination of a unitary stride with a non-unitary stride every

SC elements. But if we go back to the original remapping, we

can see that SC is determined by packed SIMD. This means

we are loading as many elements as the datapath width allows.

Having a datapath with W -bit width and working with D-bit

wide data, we would be loading W ×SC = D bits of column

elements per row. Therefore, instead of loading independent

elements, we could load them packed and then stride to the

next row. This approach would thus require only a custom

instruction that accesses the VRF on a lane-by-lane basis. This

same idea could be applied to loading and storing the output

tile matrix, accessing each row of it as packed data, and then

moving to the next one. No custom instruction for accessing

only specific lanes is needed in this case.

Therefore, to efficiently use the SA functionality available

in the xPU, we propose to add a variation of the existing

memory instructions that support memory accesses as the

already available ones, but that interacts with only one lane at

a time. These new instructions can replace the costly indexed

memory accesses, and better leverage the spatial locality. Data

comes into the VPU from the memory hierarchy the same way

as in regular instructions, but then it is directed to a single lane

instead of being distributed across all lanes. Therefore, the

main issue that could arise from this new approach is that the

performance would suffer due to a lower level of parallelism,

specifically due to a bottleneck in the VRF. However, this is



Algorithm 3 Vector index generation for loading rows of

matrix A

1: for all k ∈ {1, . . . , P} do
2: for all i ∈ {1, . . . ,SR} do
3: for all j ∈ {1, . . . ,SC} do
4: vd[k · SR · SC+ i · SC+ j] = k · SR+ i ·K + j
5: end for
6: end for
7: end for

Algorithm 4 Vector index generation for loading columns of

matrix B

1: for all k ∈ {1, . . . , P} do
2: for all i ∈ {1, . . . ,SR} do
3: for all j ∈ {1, . . . ,SC} do
4: vd[k · SR · SC + i · SC + j] = (k + i ·

(#elements/#units)) ·N + j
5: end for
6: end for
7: end for

Algorithm 5 Vector index generation for loading/storing an

output matrix tile

1: for all i ∈ {1, . . . ,SR} do
2: for all j ∈ {1, . . . ,SC} do
3: vd[i · SC + j] = i ·N + j
4: end for
5: end for

not so troublesome as it may seem, as VRF can be sliced

not only across lanes, but also within them [19], thus making

memory ports that can be accessed in parallel not be a

problem. Thus, the remaining concern would be the width of

the path to the VRF, which may need to be widened in order

to support the degree of parallelism within each lane.

Regarding the memory access extension, we add the new

set of instructions with the same format as other already

defined memory instructions, as shown in Figure 4 for load

instructions. Here, we change the OPCODE field, adding one

opcode for lane loads and another for lane stores. The main

difference between these new instructions and the old ones is

that they only interact with one lane, instead of with all. To do

so, it is necessary to encode this lane selection functionality

in the instruction. For that, we propose to use the nf field,

which in the original instructions is used to enable segmented

memory operations. This way, we can select up to 8 different

lanes. Besides this, all the other functionality is the same. With

this instruction, we modify the original xPUSA implementation

of GEMM shown in Algorithm 1 to the one presented in

Algorithm 6. While the number of times the data width is

set increases, this has little effect on the overall performance,

as it just sets a control status registers. In addition, the von
Neumann bottleneck is lessened in VPUs, as one instruction

operates over multiple data [17].

Algorithm 6 GEMM using custom vsa/vfsa instruction

with per lane memory access

1: for all i ∈ {1, . . . ,M/SR} do
2: SET DATA WIDTH(D)
3: for all r ∈ {1, . . . ,SR} do
4: v a = LOAD LANE(v a, r)
5: end for
6: SET DATA WIDTH(W)
7: for all j ∈ {1, . . . ,N/SC} do
8: for all r ∈ {1, . . . ,SR} do
9: v b = LOAD LANE STRIDE(v b, r)

10: end for
11: v c = LOAD STRIDE(v c)
12: SET DATA WIDTH(D)
13: v c = vsa/vfsa(v a, v b, v c)

14: SET DATA WIDTH(W)
15: STORE(v c)
16: end for
17: end for

While the new memory instructions can be generated by a

compiler, we developed a library with an implementation of

GEMM using these instructions.

IV. MODE SELECTION

In order to make the right decision selecting between xPUSA

and xPUVPU, we need to understand how they handle GEMM

differently. While the main difference between them is the

utilization [22], we need to better understand the causes of

under-utilization, and how it affects performance.

Comparing the algorithms for computing GEMM with VPU

and SA functionalities (Algorithms 2 and 6 respectively), it

can be seen that they partition the problem in different ways.

The VPU algorithm computes GEMM on a row-by-row order,

each iteration of the outer loop computing a matrix-vector

multiplication. Contrary, the algorithm using xPUSA does so

by tiling the output matrix in tiles with shape SR × SC.

Therefore, it is necessary to have a way to understand the

performance differences, and see how changes in matrix sizes

affect the utilization of the available resources. This can be

used to enable optimized partitioning at runtime knowing the

matrix sizes M , N , and K, as defined in Section II-B. Here,

the best partitioning schema is selected, thus leveraging the

heterogeneity offered by the xPU. To do such an analysis, the

first step is to find the smallest matrices that can be computed

by both architectures at full utilization. Here, utilization is

measured at the instruction level. To find such matrices, we

look for the Least Common Minimum (LCM) of each pair

of matrices, as shown in Equations 1, 2 and 3 for sizes M ,

N , and K respectively. Starting from those sizes, then we do

sweeps across the three dimensions, decreasing the sizes by

their corresponding Greater Common Divisor (GCD) at each

step. The result of this is a 3D array of values, one for each

(M,N,K) set of matrix sizes. This is done for both VPU and

SA functionalities. Then these volumes are divided, resulting
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Fig. 4. Format of the proposed set of memory instructions. Highlighted are the elements that changed compared to the original RISC-V vector memory
instructions.

in a single 3D volume containing the relative speedup for each

(M,N,K) set.

LCM(MV PU ,MSA) = LCM(1, SR) = SR (1)

LCM(NV PU , NSA) = LCM

(
MVL

D
, SC

)
=

MV L

D
(2)

LCM(KV PU ,KSA) = LCM

(
1,

MVL

W · L
)
=

MVL

W · L (3)

Having this 3D array of relative speedups, the next step is

to find the border, i.e., the points where the better approach

changes. If the tests are done running an operating system, the

lack of determinism will make it so that this border is not clear,

as the tested matrix sizes are quite small. Thus, in order to

analyze the border, we propose to apply an error function that

indicates the performance loss for each (M,N,K) set. Then,

we look for the points that minimize this performance loss. For

that, we apply it over the dimension N and sweep through the

other two. This way, we can recreate such a border. The reason

for choosing this dimension is that the VPU instruction is not

affected by variations in K, while the number of points across

M is quite small compared to N , and thus would offer worse

results. Along N , VPU performance will be comparatively

better for higher values, where it is closer to full utilization.

Considering values < 1 to show better VPU performance,

we propose the error function shown in Equation 4, where ri
represents the ith element in the selected row across dimension

N , j represents the potential border element that is being

evaluated, and n represents the number of elements in a row.

f(r) =

i<j∑
i=0

(1− ri) +
i<n∑
i=j

(ri − 1) (4)

Knowing for which matrix sizes each of the functionalities

provides better performance, we can partition the problem

according to this information. With this, we can develop a

GEMM implementation with increased utilization, and include

it in a library, so that the user does not need to perform

this utilization analysis. Note that the results of this analysis

depend on the specific hardware implementation, and thus such

a library needs to be optimized for the specific system. An

example of this evaluation is shown in Section VI-B.

V. EXPERIMENTAL SETUP

In order to analyze the different architectures discussed

in this paper, we have implemented them using HLS and

evaluated the design on a ZCU102 development board, which

contains a Zynq UltraScale+ MPSoC. Table I contains the

main specifications of the board. The main application runs

TABLE I
ULTRA96V1 SPECIFICATIONS

Processing System
CPU Quad-Core Cortex-A53
Frequency 1.2GHz
L1d Cache 32 kB
L1i Cache 32 kB
L2 Cache 1 MB

Programmable Logic
LUTs 274 080
Flip-flops 548160
Distributed RAM 8.8 Mb
Block RAM (total) 32.1 Mb
DSP 2 520

Memory
RAM 4GB LPDDR4, 2666 MHz

on the ARM hardcores, while the computation of GEMM

is offloaded to the FPGA fabric, acting as a coprocessor

accelerator. Due to the overhead of offloading to the FPGA,

we have moved the instruction generation to the fabric. On

the software side, the board was running a Linux kernel,

generated with Petalinux. For measuring power, we have

leveraged the /sys/class/hwmon interface that provides access

to the measurements from the different power rails taken by

different INA 226 integrated circuits (ICs) from TI. We get the

actual power consumption of the device by running a power

measuring program in parallel that reads the ICs and computes

the current power with a fixed sampling rate. Based on the

instant power and on the sampling rate, we compute the energy

consumption. Although this application runs in parallel, it does

not affect the performance of running benchmarks. As for the

specific implementations, we have done them programming in

C/C++ and then generating the RTL using HLS.

With this setup, we implemented both the baseline VPU and

the original VSA xPU presented in [22]. First, we validated

our FPGA results against the ones presented in [22]. Then,

we analyzed the original VPU baseline. We observed that the

original simulator [28] performs the vector-scalar operation

by means of broadcasting the scalar to a vector register.

In this paper, our VPU baseline is an actual vector-scalar

implementation, where the input corresponding to the scalar

register is fixed for the execution of the whole instruction.

To represent the different configurations in the design space

analysis, we modified the number of lanes and the total number

of units. We chose array sizes of 2×2, 4×4, and 8×8, as bigger

sizes would lead to configurations uncommon in current VPUs,

even for narrow datatypes. As for the VRF, we evaluated dif-

ferent Maximum Vector Length (MVL) configurations. MVL

defines the maximum number of bits that fit in a vector register

at a given time. As the original xPU was designed targeting

long-vector architectures, our configurations range from 2048

bits (ARM’s SVE biggest supported MVL [29]) up to 16384

bits ([17], [19], [28]). This needs to be seen in light of the



TABLE II
SUMMARY OF APPLICATIONS USED

Application/Benchmark Domain M N K
ResNet18 [30] DL 64-512 1-16384 147-4608
AlexNet [31] DL 1-384 169-4096 363-9216
DeepBench Device [32] DL 64-5124 1-1500 128-2048
Linpack [33] SC 2-8190 2-128 2-129
Low Order FES [34] SC 8 32 16

datatype width. For example, experiments with 32b data and

MVL of 16384b are equivalent to experiments with narrower

data and shorter MVL (e.g., 8b data and MVL of 4096b). In

our case, we will be showing the results of 32b data.

A. Workload

We define each GEMM computation as C[M,N ] =
A[M,K] × B[K,N ] + C[M,N ]. To compute it, we have

implemented Algorithms 1, 2 and 6 at the instruction level, and

programming in a vector-length agnostic fashion. We have se-

lected applications from the fields of Deep Learning (DL) and

Scientific Computing (SC). For the former, we have selected

two well-known image recognition models: ResNet18 [30] and

AlexNet [31]. We have also used the DeepBench benchmark,

which is part of the Coral-2 benchmark suite [32]. As for

applications in the scientific domain, we have tested the Lin-

pack benchmark [33] and finite element solvers as presented

in [34]. Table II summarizes the applications used, and shows

the ranges of their matrix sizes.

The methodology used for the evaluation of the xPU is to

focus on the different GEMM calls of each application. This

is a valid approach as GEMM is the most compute-intensive

kernel across all the evaluated applications. Therefore, one

intermediate step in this evaluation is to determine the input

sizes for each GEMM, either from the corresponding papers or

from executing the applications. For AlexNet and ResNet18,

we got them from the Darknet framework [35], after the

transformation with the im2col() function, taken from the

Caffe framework [36].

VI. EXPERIMENTAL RESULTS

A. Custom Memory Accesses

We start by analyzing ResNet18, but the conclusions ex-

tracted for the individual GEMM calls also apply to the other

applications. The first step is to analyze the performance for

all layers of ResNet18, as shown in Figure 5. This figure

represents the execution time speedup for running xPUSA,

compared to the VPU baseline. It shows two sets of bars:

the first one uses indexed memory accesses, as in the orig-

inal paper (Algorithm 1), while the second one uses our

proposed memory access (Algorithm 6). Both sets include

the improved vector-scalar baseline and the increased VRF

utilization proposed in Section III. These two improvements

cancel each other in terms of performance. The specific

configuration for this experiment consisted of an MVL of

16384 bits and 16 functional units organized as a 4×4 SA. As

can be observed, the initial xPU implementation using indexed

memory accesses struggles to provide speedup, which is only

significant in layers 14-17. This is due to the indexed accesses

not leveraging the locality. However, by adding our custom

lane-by-lane memory accesses, xPUSA achieves a speedup of

up to 3.38x compared to the VPU baseline. This is an increase

of up to 72% compared to xPUSA with the VPU memory

support.

Next, we show in Figure 5b the design space analysis for

xPUSA for different configurations, changing both the MVL

and the number of functional units. Here the data shown is

the result of calculating the speedup across all GEMM calls

together, adding all the execution times and then computing

the speedup. The first point to notice is that, for greater

SA sizes, xPUSA offers more speedup. However, when using

indexed memory addresses, the speedup decreases as the MVL

increases. This is contrary to what is shown in [22], and it is

due to using actual vector-scalar operations instead of perform-

ing them by means of broadcasting. While broadcasting time

depends on the MVL, pure scalars take the same time to load

independently of it. It is not that increasing the MVL makes

xPUSA perform slower, but the VPU baseline leverages it

better. However, when using our custom memory instructions,

xPUSA can leverage the increase in MVL. This is due to the

lane-by-lane instructions being able to appropriately leverage

the spatial locality present in the SA-like patterns. One point

to note is that a similar conclusion to this can be extracted

from the energy consumption data. The corresponding energy

measurements are shown in Figure 5c.

B. Leveraging Heterogeneity

As discussed in Section IV, algorithms for xPUSAand

xPUVPU partition the problem in different ways. By under-

standing the implications of these different approaches, we

can leverage the heterogeneity of the different matrix sizes

with the heterogeneity of our hybrid architecture. Therefore,

now we will analyze how this affects the xPU by applying the

analysis methodology presented in Section IV. Important to

remember is that the results presented here apply only to the

specific configuration tested. This analysis would have to be

repeated for different configurations. Like in the layer analysis,

the configuration for this experiment consisted on a MVL of

16384 bits and 16 functional units organized as a 4×4 SA.

The results of the analysis can be seen in Figure 6. In this

figure, each subfigure represents the sweep across dimensions

M (Y axis) and N (X axis) for a given K. Therefore, they are

slices of the 3D array obtained after performing all the sweeps.

Here we only show five values of K: the one with minimum

utilization for xPUSA, and milestones corresponding to loading

the columns up to filling different lanes. Each point thus

represents the relative difference between computing GEMM

for a given (M,N,K) with xPUSA or xPUVPU. As we can

see, for K = 128, i.e., when the deepest pipeline available

for this configuration, xPUSA can outperform xPUVPU as long

as the vertical tiling does not leave less than 3 rows per

tile (Figure 6e). If not, the penalty for padding with new

rows will not be recovered. Note that, for matrices where

M > SR, this only applies to the edges, as the rest of the



(a) Layer-by-layer speedup. Configuration of 4×4 units and MVL = 16384 bits.

(b) Total speedup for different xPU configurations. (c) Total energy savings for different xPU configurations.

VPU baseline
xPUSA + indexed memory accesses
xPUSA + lane-by-lane memory accesses

Fig. 5. ResNet18 results including the support of the new memory instructions.

rows can be tiled in groups of SR rows. Across the other

tiling dimension, the closer the matrix can be partitioned in

groups of MVL/D elements, the better it will be for xPUVPU,

as it will get closer to full utilization. Here, xPUSA also pads

new columns, but the penalty is smaller than the one paid by

the VPU. If K is reduced, the benefits of running xPUSA are

incrementally reduced, until reaching the state seen in Figure

6a, where it cannot outperform xPUVPU. This is due to the fact

that initialization and synchronization penalties are not being

balanced out.

In a more general way, this means that the VRF needs

to be able to feed sufficient data to xPUSA. The functional

units will not be sufficiently fed if K or the VRF is small.

Therefore, when implementing this xPU, it is important to

keep a good compute memory balance. When designing xPU,

units that offer different functionalities in the same hardware,

it is important to consider that all the parameters affect all the

functionalities. This makes the design process more sensitive,

as changes that are beneficial to one architecture can be

detrimental to the other.

With this data, we get the border with Equation 4, and divide

the problem based on it, running xPUSA or xPUVPU according

to which one is better for each situation.

Figure 7a is the updated version of Figure 5, in which a

third set of bars has been added. This new set of bars repre-

sents the combination of xPUSA and xPUVPU with optimized

functionality selection. This approach aims to minimize under-

utilization. As it can be seen, most of the layers remain the

same, as the initial configuration turned out to be the best

one for the corresponding matrix sizes, and thus the improved



(a) K = 1 (minimum K utilization for xPUSA)

(b) K = 32 (1 lane full for xPUSA)

(c) K = 64 (2 lanes full for xPUSA)

(d) K = 96 (3 lanes full for xPUSA)

(e) K = 128 (all lanes full for xPUSA)

xPUSA better Neutral xPUVPU better

Fig. 6. Tradeoffs between xPUVPU and xPUSA for different pipeline depths. The X-axis represents the different values of N and the Y -axis the different
values of M . Configuration of 4×4 units and MVL = 16384 bits.

implementation still computed these layers exclusively using

xPUSA. However, for the last layer, where xPUSA was being

heavily underutilized, the new program can detect it and

compute it more efficiently with xPUVPU. For each GEMM

call, this improved implementation provides the best parti-

tioning, maximizing the utilization of the available resources

using xPUSA or xPUVPU accordingly. Moreover, as can be

seen in Figure 7a, this hybrid approach does not incur any

relevant penalty. The only overhead present is partitioning

the problem at runtime, but it is negligible relative to the

matrix multiplication itself. Figure 7a shows the updated

results for the whole network. As only one layer, the least

time-consuming one showed benefits, no relevant changes can

be seen compared to the xPUSA implementation. The same

conclusions apply to energy consumption.

Besides ResNet18, we have also tested other applications,

as described in Section V-A. For AlexNet we can see that

performance increase is achievable using the custom load

memory accesses (Figure 7c). Moreover, here we can see

how the utilization analysis can provide observable benefits.

DeepBench offers results similar to ResNet18 (Figure 7d).

Regarding scientific applications, for the Low Order Finite El-

ement Solver, we observe only minimal improvement (Figure

7e), as its matrix sizes are small, i.e., (M,N,K) = (8, 32, 16),
problem size for which GEMM is compute bound. The small

performance increase is due to using fewer instructions, and

a slightly better VRF utilization. As for Linpack, most of

the GEMM calls have small values of K. Therefore xPUSA’s

pipeline suffers, and cannot achieve good performance com-

pared to xPUVPU in most operations. However, as seen in

Figure 7f, our optimized implementation can detect this and

avoid any performance degradation.

VII. RELATED WORK

VPUs and SAs have their corresponding advantages and

drawbacks and, to be able to leverage the advantages of both,

several works have combined them in different degrees. One

of the first architectures to do this is Google’s TPUv2. In this

case, they had to extend the SA-based architecture with a

VPU to efficiently support batch normalization [21]. While

this combination happened by necessity, to support a specific

kernel, other architectures are intentionally combining both.

One such example is the MEEP platform, which includes the

Vector and Systolic Accelerator Tiles [37]. Each of these tiles

provides one VPU and two different SAs. In this case, VPU

and SAs share the issue unit with a scalar core and also share

the memory interface. IBM went one step further in its latest

Power10 processor [38]. In it, the VPUs share their VRF with

the SAs. Finally, VSA difussed the barriers between VPUs and

SAs to the point of reusing the arithmetic units of a VPU to

implement a SA [22]. This can be called a Flexible Processing

Unit, or xPU, a processing unit that uses the same hardware to

offer different functionalities. However, that work presented a



(a) ResNet18 layer-by-layer speedup

(b) ResNet18 Speedup (c) AlexNet Speedup (d) DeepBench Speedup (e) Low Order Finite Element
Solver Speedup

(f) Linpack Speedup

(g) Resnet18 Energy (h) AlexNet Energy (i) DeepBench Energy (j) Low Order Finite Element
Solver Energy

(k) Linpack Energy

VPU baseline
xPUSA + indexed memory accesses
xPUSA + lane-by-lane memory accesses
xPU

Fig. 7. Speedup and energy savings for tested applications. Configuration of 4×4 units and MVL = 16384 bits.

heterogeneous architecture, the available memory functionality

to fetch the data was reused. This functionality was designed

for a VPU and does not fit the SA without major penalties. In

addition, while VSA was evaluated running as either a VPU

or an SA for different GEMM calls, an in-depth analysis to

understand under which conditions each of the functionalities

is better was missing.

Another example of an xPU is SIMD2 [39]. In this work,

the authors observe that there are algorithms that share key

characteristics with GEMM. In particular, they find several

matrix applications with semiring-like structures equivalent to

GEMM. Thus, they leverage this fact to present an extended

SA that handles all those different matrix operations.

A different approach would be the case of TCUDB [40].

In this paper, the authors present an approach to effi-

ciently compute databases using NVIDIA’s Tensor Core Units

(TCUs) [41]. Therefore, while not conceived as such, it could

be said that TCUs have become a xPU a posteriori.
In summary, processing units that provide different func-

tionalities are being proposed. For them, designers need to be

aware that each aspect of the unit needs to be able to efficiently

support both functionalities to exploit all its potential.

VIII. CONCLUSIONS

In this work, we have shown that, when designing process-

ing units with different functionalities, all the aspects need to

be considered for all the functionalities in order to achieve the

best performance. To illustrate this we have selected VSA,

a xPU that provides both SA and VPU functionalities. By

analyzing in detail the memory patterns, we have been able

to achieve speedups of up to 4.22x compared to a VPU

baseline. This means an increase of up to 72% compared to

only focusing on the computational aspect of the architecture.

Moreover, we have presented a detailed analysis procedure

that allows us to understand under which conditions each of

the functionalities offers better performance. By integrating

the insights from this analysis, we have obtained a software

implementation that minimizes hardware under-utilization by

using both functionalities combined.
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