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Abstract—Reducing greenhouse gas (GHG) emissions from
Information and Communication Technology (ICT) has become
a hot topic since the Paris Agreement. Data centers are one of the
most impactful ICT energy consumers since they are built to run
24 hours / 7 days. An emerging discussion is switching their power
supply from brown to green energy, using Renewable Energy
Sources (RES). However, this change introduces uncertainties
linked to production intermittence. This work is part of the
Datazero2 project. This project designs a data center powered
only by renewable production, adding storage elements to reduce
the impact of the intermittence. A clean-by-design data center
requires several decisions at different levels of management. To
do so, it uses predictions to plan the actions for the next few
days. However, it also needs to react to the actual events that can
vary from the forecast. This work presents the BEASY heuristic.
BEASY mixes power and scheduling decisions in a renewable-
only data center, seeking to reduce the number of killed jobs
and wasted energy. The results demonstrate that BEASY reduced
wasted energy by up to 35.33% in critical cases. Considering the
killed jobs, it also kills fewer jobs than the state of art algorithms
in all executions.

Index Terms—Scheduling, Renewable sources, Data center,
Storage management

I. INTRODUCTION

The Information and Communications Technology (ICT)

share of global greenhouse gas (GHG) emissions is around

1.8-2.8%, or something between 2.1% and 3.9% considering

its supply chain [1]. The data centers sector is one of the most

electricity-expensive ICT actors since they provide services

with a 100% uptime guarantee [2]. For example, a report

revealed that, in 2015, Google data centers consumed the same

energy amount as San Francisco, California [3]. Predictions

show that the tendency is getting worsen without political and

industrial action [1]. These predictions indicate that we are

reaching the limit of improvements in processor technologies

while expanding internet usage [1], [4]. This scenario makes

the ICT community discuss how to reduce the impact of

data centers on greenhouse gas emissions [5]. One possibility

is migrating from brown (from polluting sources, such as

gas, coal, and oil) to green energy (from renewable sources,

such as wind and sunlight) [5]. However, renewable sources

introduce uncertainties due to weather conditions. Big cloud
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providers (e.g., Google and Amazon) reduce the impact of

power intermittence by inserting grid connections [6]. So, they

are not 100% green data centers. This work is part of the

Datazero2 project. This project designed a data center operated

only by Renewable Energy Sources (RES) without any link to

the grid. Datazero2 aims to provide a feasible architecture to

maintain data centers 100% clean.

A clean-by-design data center introduces several elements to

provide energy to the IT servers, such as Wind turbines, Solar

panels, Batteries, and Hydrogen tanks. Aiming to reduce the

impact of weather intermittence, it forecasts the near future

power production. Knowing the incoming energy allows it to

plan the storage (battery and hydrogen) usage. Also, it predicts

the power demand from the users since it is another source

of uncertainty. For example, if the data center receives fewer

requests on the weekend, it can store energy to deal with the

week’s demand. So, the project includes an offline part to

plan the actions for the next few days. However, the actual

power production and demand can vary from the predictions.

Therefore, this project also includes an online module to

react to the actual events. The online module receives jobs

to execute, scheduling them when possible. It also adapts

storage usage according to power production and demand.

For example, if the power production is higher than expected,

it will profit to speed up the running jobs or to start new

ones. On the other hand, if the power production is lower

than expected, it tries to reduce the impact of it in the running

jobs, mainly avoiding killing them. This article describes a

heuristic named BEASY to aggregate all these decisions. This

heuristic is a modification of the well-known algorithm EASY

Backfilling. Before placing a job in the servers, BEASY verifies

if the servers will be available during all the estimated job

execution. If so, it places the job. If not, BEASY evaluates the

possibility of migrating energy from the battery usage to finish

this job. Also, it considers the power demand and production

predictions to calculate the potential battery state of charge

(SoC). It uses the possible SoC to find the moments to be

more careful, reducing the number of killed jobs due to lack

of energy. Results show that it reduces the number of killed

jobs and provides better energy usage.

This paper is organized as follows. Section II presents the

related work, highlighting the gap in state-of-the-art. Then

Section III shows an overview of the problem. Section IV

addresses the proposed model. Section V presents the experi-



ments and the discussion about the results. Finally, Section VI

concludes the article.

II. RELATED WORK

Considering the challenge of reducing the impact of ICT

on GHG emissions, several works propose power data centers

using RES. In [7], the authors propose RARE, a Renewable

energy Aware Resource management. This manager uses Deep

Reinforcement Learning (DRL) to define the job to run, con-

sidering the job’s demanded resources. Their model maximizes

the job value (a value given by the user for each job). The

energy comes from solar, wind, batteries, and the grid, but

they do not make decisions on the power side (it is a future

work). The authors in [8] focus on scheduling different tasks

from a job. They receive a Directed Acyclic Graph (DAG)

from the user. They propose a DRL to find the best scheduling

considering the tasks’ dependency and reducing the cost of

the data center. The reward considers the carbon emission

price, the price to buy energy from the grid, and the QoS

penalty. In work [9], the authors also try to minimize the

data center cost, considering the power consumption of the

servers and cooling. Renewable production includes wind and

solar, adding batteries to reduce the intermittency impact.

Their work has integration with the grid to buy/sell energy.

[10] proposes an admission control policy, named Cucumber,

that accepts jobs only if they can be computed within their

deadlines without the use of grid energy. They estimate the

power production and consumption, using the remainder of

both (production minus consumption) to accept new jobs.

Cucumber has no link to the grid. However, it focuses on using

well the energy from the moments with peak production.

Work [11] also proposes an optimization to reduce the

data center cost. The authors calculate the cost considering

the price of the energy from the grid, but also the cost of

building a renewable power plant, daily maintenance cost,

and power capacity. They show an online algorithm to solve

the optimization problem. This algorithm considers the load

as a power demanded, divided into delay tolerant and delay

sensitive. The decision is a trade-off between executing delay

tolerant workload or buying energy from the grid. The authors

in [12] proposed a renewable-only scheduler. This scheduler

considers phase-based tasks. The scheduler meets the power

constraint from an external module. The scheduler can degrade

the jobs to meet the power capping. However, they do not

consider power decisions, such as using more power from

the battery. Work [13] introduces a scheduler to define task

placement considering energy consumption constraints. The

authors do not specify the source of this constraint, but it could

be from renewable production. They focus on, knowing all the

tasks in a job, which task placement minimizes scheduling

length while satisfying energy consumption constraints.

The authors in [14] apply the Lyapunov optimization tech-

nique to optimize a stochastic optimization problem taking

heterogeneous service delay guarantees and battery manage-

ment into account. The energy comes from the grid, but they

introduce batteries to stock when the grid’s price is low.

The authors in [15] design Blink, an abstraction for han-

dling intermittent power constraints. This abstraction blinks

(activating and deactivating them in succession) the servers to

control the power consumption. Blink can be useful for some

web applications, but it is not for all applications type. The

authors of [16] proposed a Mixed Integer Linear Programming

(MILP) to optimize the commitment of a data center powered

by only wind turbines, solar panels, batteries, and hydrogen

storage systems. This work focuses on offline decisions, using

demand and production estimation. Finally, [17] proposes a

mix of offline and online decisions, dealing with a renewable-

only data center. Offline predicts usage and demand, creating

an offline plan. Online modifies this plan according to the

actual production demand. The modifications are mainly the

compensation of the variance between planned and actual. For

example, if the production is higher than predicted, they can

use more power to run more jobs. They propose three policies

of compensation.

It is possible to notice that the majority of the works

consider only online [7], [8], [11], [12], [15] or offline

decisions [9], [10], [13], [16]. Therefore, to the best of our

knowledge, only work [17] proposes a mix between offline

and online decisions, for a renewable-only data center and

considering battery awareness. However, this work does not

estimate battery usage from jobs in future steps and proposes

simplistic compensation policies. Also, it only evaluates the

information given by the offline plan, whereas BEASY uses

predictions to find the best battery changes. We compare our

results with the policies proposed in [17].

III. PROBLEM STATEMENT

The main problem in a renewable-only data center is dealing

with uncertainties from weather and workload. In mixed data

centers (renewable and grid), the grid mitigates the impact

of these uncertainties since they can buy power when needed.

However, these mixed data centers are not 100% green energy

consumption. A renewable-only data center can use storage

(e.g., battery and hydrogen) to help in power production

intermittence. So, when there is more energy, it can store the

surplus energy, using it later. Nevertheless, storages introduce

another decision level (when recharge/discharge). Renewable-

only data centers can introduce predictions, helping in these

decisions. For example, introducing power production pre-

diction can help to find the best moments to recharge and

discharge the batteries. However, the reality can be different

from the forecasts, and it needs to react correctly to the actual

events. Thus, it is crucial to mix offline and online decisions,

which is a gap in the state of the art (as presented in Section

II).

Datazero2 designs a renewable-only data center. It includes

all elements, from the architecture (e.g., electrical and IT

sizing, power connections) to the decisions (e.g., power en-

gagement, job scheduling, server states). Renewable power

production comes from wind turbines and solar panels. It

includes batteries and hydrogen as storage to deal with this

intermittence. Fig. 1 illustrates the decision process elements.



There are two main blocks: Offline and Online. The offline

predicts demand and production and creates a plan for the

near future (also named time window, see Fig. 2). The online

receives the offline plan and adapts it according to reality.

In the offline part, IT Decision Module (ITDM) predicts the

power demand from the workload for the near future, while

Power Decision Module (PDM) forecasts the power produc-

tion from renewable sources. ITDM focuses on turning on/off

servers and defining their speed to deal with the predicted

demand, and PDM concentrates on responsibly engaging the

sources (renewable and storage). Each module calculates a

power profile using its predictions. The power profile is a time

series of the power given to the data center. So, while ITDM

tries to approximate the power profile to the demand, PDM

verifies which power profile is possible with the incoming

renewable production.

Offline
Weather

prediction
Demand

prediction ITDM PDMNM

Server
states

Storage
levels

Online

ODM

Battery

Wind turbines

Solar panels

Servers

Jobs

Power
engagement

Fig. 1. Online and offline integration.

Both decision modules send a proposition of power pro-

file to the Negotiation Module (NM). NM evaluates both

power profiles and returns a new one. Offline runs several

negotiations until both modules agree or it reaches a time-

out. After the negotiation step, ITDM defines the server

configuration (server on/off and speed) for the following days

(time window), which meets the negotiated power profile.

On the other side, PDM plans source engagement to provide

the agreed power profile. Fig. 2 shows the time window and

decision steps. The time window is divided into several time

steps of 5 minutes. The modules can change the decisions from

one time step to another, but the actions stay constant inside

each step. Actions mean: turning on/off a server, changing the

server’s speed, and using more or less power from storage.

3 862 863 864

Time step (5 min)

Time window 0 (72 hours)

1 2 3 862 863 864

Time window n (72 hours)

1 2

Fig. 2. Offline modules plan the actions for the next three days (time window).

Both offline decision modules dispatch their results to

the Online Decision Module (ODM). This article focuses

on ODM. ODM uses offline plans to guide its decision.

However, the actual power production and demand can vary

from the predicted ones. So, ODM must react to the real

values, adapting the plans. Besides changing the power plans,

ODM is also in charge of the job scheduling decisions. The

user submits a job with the maximum execution time (named

walltime) and the resources demanded by the job. Using both

information and the submission time, ODM needs to select

the jobs in the queue to execute and define the moment and

the servers to process them. The job result can be finished,

killed, or postponed to the next time window. ODM has three

objectives: maximizing finished jobs, reducing the number of

jobs killed, and respecting the storage level at the end of

the time window. Every job killed represents wasted energy

since it only processes a part of the job (the job’s result is

not valuable). It is better to postpone a job than to kill it.

However, a scheduler is not good if it postpones all jobs. Thus,

ODM needs to balance starting new jobs that can be killed or

postponing them. It kills jobs when there is no energy to keep

them running. Usually, batteries can deal with the uncertainty

of production and demand, providing the energy to maintain

servers running. However, when the state of charge of the

batteries arrives at critical levels, it is not possible to keep the

servers processing. At this point, ODM puts servers to sleep,

killing their jobs.
ODM also kills a job when the job’s execution time is

greater than the walltime. Several HPC data centers, such

as GRID50001 and METACENTRUM2, apply this policy.

Nevertheless, ODM uses Dynamic Voltage-Frequency Scaling

(DVFS) technique to reduce the energy spent by the servers’

processor in critical moments. Reducing the processor energy

spent also reduces its speed. So, ODM can not maintain all

processors at minimum speed all the time because this would

result in several jobs reaching the walltime. Additionally, the

offline plan gives an expected state of the charge of the storage

elements at the end of the time window. ODM must finish the

time window with the battery level as close as possible to this

target level. Since there are chained time windows (see Fig.

2), it is not effective to dry the battery every time window.

Thus, ODM introduces power compensations to deal with

this target battery constraint. For example, if ODM increases

energy usage now, it must use less in the future. To sum up,

ODM must schedule the jobs, consider the predictions and

the battery levels to avoid killing them, balance the servers’

speed finishing the jobs before the walltime, and finalize the

time window with the battery level close to the target.

IV. PROPOSED MODEL

This section presents the heuristic applied in ODM to deal

with its different responsibilities. We named this heuristic

BEASY (Battery Easy Backfilling). This heuristic acts in three

different moments. First, Section IV-A explains the predictions

used through the BEASY’s decisions. These predictions are

made at the beginning of the time window, just one time.

Then, Section IV-B describes the modifications in the EASY

Backfilling heuristic to introduce battery awareness. The mod-

ified EASY Backfilling acts every time a job finishes, arrives,

1https://www.grid5000.fr/
2https://metavo.metacentrum.cz/



or new servers are available. Finally, Section IV-C defines the

compensation policies. BEASY compensates every time step.

A. Predictions

As presented in Fig. 1, ODM receives two predictions

from offline modules: power production and power de-

mand. Offline can predict both using different methods, such

as Regression-based (ARIMA, Support Vector Regression),

Classifiers (Neural Network, Support Vector Machine), and

Stochastic (Markov Model-based, Queueing Theory-based)

[18], [19]. Since ODM works online, it will not predict itself

but use the predictions from offline. So, this section will not

focus on the forecasting method but on using its results. Fig.

3 illustrates both forecasts showing the area of uncertainty.

The real value can be any value inside the uncertainty area.

BEASY uses these predictions to create different possible states

of charge using equations 1, 2, and 3:

SoCt = (SoCt−1×σ)+(Echt×ηEch
)−(Edcht×ηEdch

) (1)

Echt =

{
Ert − Edt, if Ert > Edt

0, otherwise
(2)

Edcht =

{
Edt − Ert, if Ert < Edt

0, otherwise
(3)

Where:

• SoCt: State of charge in time step t;
• σ: The natural battery discharge rate;

• Echt: Energy to charge the battery;

• Edcht: Energy to discharge the battery;

• ηEch
: Charge efficiency;

• ηEdch
: Discharge efficiency;

• Ert: Estimated energy production from renewable;

• Edt: Estimated energy demanded.

Fig. 3. Renewable production and demand prediction. The blue (production)
and green (demand) areas are the uncertainty given by the forecast.

Fig. 4 demonstrates the result of applying Equation 1

using nine different predictions. BEASY calculates 9 SoC

possibilities combining lower, median, and upper boundaries

from the area presented in Fig. 3 (e.g., demand lower boundary

+ production lower boundary, demand median + production

lower boundary, demand median + production higher bound-

ary, etc...). It is possible to notice that the state of charge

can vary a lot. Section IV-C will describe how we use these

SoCs to compensate. Fig. 4 also illustrates both SoC upper

and lower thresholds (red dashed lines). Setting upper and

lower thresholds helps to increase the battery lifetime [20].

The narrower the range, the longer the expected lifetime

[20]. However, selecting a narrow range limits the battery

benefits. The figure presents both thresholds as 90-20%, but

they are parameterizable. Finally, BEASY estimates dangerous

areas in the time window. Fig. 4 indicates this moment.

It considers a dangerous area when more than half of the

predicted SoC curves are below the lower threshold. Taking

Fig. 4 example with nine predictions, BEASY considers the

dangerous point where five curves are below 20%. Section

IV-B will explain how it uses these moments to make better

scheduling decisions.

Fig. 4. Result of the Equation 1 for different predictions. The dangerous area
is when 5 or more curves (so, more than half of them) are below 20%.

B. BEASY scheduling

One of the most important ODM’s duties is placing jobs

on servers. To do so, BEASY implements a well-known

heuristic name EASY backfilling, but using two different sorts

[21], [22]. We detail how we use both sorts in this section.

Algorithm 1 presents the main idea (based on [22], but with

some modifications). BEASY runs this algorithm when a job

arrives, a job finishes, or there are new servers available. First,

this heuristic sorts the jobs in the queue in a priority order PR

(line 2). Then, it finds the servers to run this job (line 5).

The server must be available at least at the actual time step to

be chosen. Line 6 has the first modification. Usually, EASY

backfilling only verifies if the servers S are available now. We

added the following verifications:

1) It verifies if the servers S are available during the entire

execution, considering the walltime given by the user as

the execution time. If so, it returns true. If not, it goes

to the next verification;

2) It verifies if it is possible to change the plan to keep the

servers S running the entire execution. To do so, it does

the following steps:

a) First, it calculates how much energy is needed. To

do so, it calculates Ed
′
t for each time step t that

the server sleeps, putting the server in the same

state/speed as the previous time step (t − 1). The

total energy demanded is
∑

Ed
′
t−Edt considering

all the time steps that the job executes;

b) Then, it calculates how much energy is possible

to take from future steps, putting idle servers to

sleep. Let it be Eposs. Since we have to maintain

the state of charge between both thresholds, we can

not ”migrate” all the energy to use now. So, it only

considers the idle servers from the actual time step

until the time step where the SoC will be equal or

lower to the lower threshold. We can migrate the

energy freely between the actual time step and this



future one. Fig. 5 illustrates this verification. In the

figure example, the actual step is at hour 10. In this

step, it needs to verify how much energy is possible

to save from future steps. So, it verifies the idle

servers from hour 10 to hour 29, because at hour 30

the state of charge is equal to 20%. It can change

the usage from hour 10 to hour 30 freely. Taking

energy from after hour 30 could violate the lower

threshold since we will use more energy from the

batteries.;

c) Then, it tests if Eposs >=
∑

Ed
′
t−Edt. If this is

false, it returns false and does not change the plan.

If this is true, it makes Edt = Ed
′
t, changes the

server speeds, and recalculates the planned state of

charge (using Equation 1).

Algorithm 1: BEASY scheduling. Modified from

[22].

input : Queue Q of waiting jobs, PR as priority order, and PB

as backfilling order.
output: None (calls to Start())

1 begin
2 Sort Q according to PR;
3 for job j in Q do
4 Pop j from Q;
5 S ← select servers(j);
6 if j can be started and finished in servers S then
7 Start(j, S);
8 else
9 Reserve j at the earliest time possible according to

the walltime of the currently running jobs;
10 Sort Q according to PB ;

11 for job j
′

in Q do
12 S ← select servers(j

′
);

13 if j
′

can be started and finished in servers S
without delaying the reservation on j then

14 Start(j
′
, S);

15 end
16 end
17 break;
18 end
19 end
20 end

Fig. 5. Verification of possible energy to save.

These verifications do not increase the complexity. Verifi-

cation 1 goes through the plan with limited size (e.g., in our

three-day time window, we have a plan with 864 time steps).

Verification 2-a is done together with verification 1. Verifica-

tion 2-b is faster than the others since it can process fewer steps

and it can stop when Eposs >=
∑

Ed
′
t − Edt. Verification

3-c is just to apply the modifications. It recalculates the state

of charge to maintain the SoC updated for the next jobs to

schedule. So, if a job puts a future state of charge close to the

lower threshold, the next job takes it into account. Continuing

in algorithm 1, if the tests pass, then it starts the job (line

7). When it finds a job that can not be placed now, it starts to

backfill (lines 9-17). Then, it finds the first moment to run this

job (named priority job) in the future (line 9). So, it re-sorts

the queue using PB (line 10), placing the other jobs in the

servers (lines 11-16) without delaying the (future) priority job

execution (line 13). Line 13 does the same verification as line

6.

As mentioned before, EASY backfilling sorts the jobs by PR

and PB . Our implementation starts with PR using Bounded

Slowdown:

bsldj = max(
wj + pj

max(pj , τ)
, 1) (4)

Where:

• bsldj : Bounded Slowdown of job j;

• pj : Job j execution time (we consider the walltime here);

• wj : Job j waiting time;

• τ : Constant to avoid smaller jobs from reaching very high

Bounded Slowdown (fixed in 10 seconds).

Bounded Slowdown estimates the ratio between the total

time that a job stays in the system and its actual processing

time. This order helps to let a job wait proportionately to its

size. For PB , BEASY sorts the jobs by the smallest sizes first

(walltime multiplied by the number of resources needed). This

order helps in the backfill process since sometimes the ”holes”

in the scheduling demand very small jobs. Also, these jobs are

less likely to demand more energy from future time steps (so,

BEASY lets the energy to the priority ones). Fig. 4 highlights

a dangerous area. In this area, BEASY changes PR to also use

the smallest sizes first. These are not good moments to start

big jobs, even if they are waiting too long in the queue. Small

jobs demand less energy and are more likely to finish.

C. Power compensations

After describing the scheduling algorithm, this section ex-

plains the heuristic to compensate for power fluctuations.

While the scheduling algorithm runs for every job arrival, end,

or server state modification, the power compensation algorithm

will execute at every new time step. Since the scheduling

algorithm modifies future time steps (it places the jobs in

servers that are already on) and verifies the violations, we do

not need to run the power compensations for every placement.

Also, changing the server state too much between on and off

can degrade it faster and takes time to power on/off. So, we

defined that the state and speed stay constant inside each time

step.

The main objective of this part of the heuristic is to

finish the time window with the state of charge as close as

possible to the planned. Renewable sources can produce more

or less than predicted. Also, the power usage can vary due

to server idleness or scheduling modifications. So, at each

time step, BEASY calculates the state of charge for all future

time steps using Equation 1. Then, it calculates the energy

difference Ediff between the target and the estimated SoC

at the end of the time window. For example, if the target



level is 50% and the estimated SoC is 51%, Ediff is 1%.

So, we need to reintroduce 1% of the battery. On the other

hand, if the estimated last SoC is 49%, Ediff is -1%. So,

we need to reduce the usage by 1%. Therefore, it needs to

reintroduce/remove the energy Ediff before the end of the

time window. When the compensation is positive (Ediff > 0),

we can increase the speed of the servers or run more jobs.

First, BEASY uses the Ediff to speed up the running jobs. It

increases the speed from the actual time step to the time step

that the job finishes. This helps in avoiding jobs to reach their

walltime. After that, if there is still energy, it verifies if there

are jobs in the waiting queue. If so, it turns on some servers

to run these jobs. If there is not or it turned all the servers

needed to run jobs, it lets the remaining energy in the battery.

This is a conservative approach. BEASY could be aggressive,

using the remaining energy to turn on machines in the future.

However, we prefer to finish with more energy in the batteries

than expend this energy not wisely.

In the negative compensation (Ediff < 0), BEASY consid-

ers the estimated SoCs from Fig. 4. First, it finds the time step

with the higher number of predictions below 20% or the last

time step if there are no predictions below 20% (let’s name it

the violation time step). The idea is to reduce the usage before

the violation, reducing the violation probability. Then, BEASY
reduces servers speed in the following order (stopping when

it is enough):

1) Impacts idle servers from the violation time step to

the actual time step (it goes through the time steps

backward);

2) Impacts idle servers from the violation time step to the

last time step (it goes through the time steps forward);

3) Impacts running servers from the violation time step

to the last time step (it goes through the time steps

forward);

4) Impacts running servers from the violation time step

to the actual time step (it goes through the time steps

backward);

BEASY focuses first on idle servers because impacting not

idle servers can increase the number of killed jobs. Killing

jobs increases wasted energy. So, BEASY searches for idle

servers in both ways (violation time step → actual time step

and violation time step → last time step). If reducing the usage

from idle servers is not sufficient, we start to impact running

servers (steps 3 and 4). Our idea is to impact them as far

as possible from the actual step, but considering the violation

step. The real total job execution time is uncertain (e.g., they

could finish earlier than predicted). If we change the order

(step 4 before step 3), the chance of really impacting the job

is higher since it will reduce the energy from the violation

step to the actual step. Doing step 3 before, we expect that

the job finishes before these changes, while impacting the steps

around the violation step. BEASY kills jobs only when there

is no power action possible (e.g., migrating power from the

future) to maintain them running.

V. EXPERIMENTS

This section will present the results of our experiments.

The idea is to compare the BEASY with the algorithms from

the literature. Follow plan is an algorithm that follows the

offline plan without changing it. Power reactive changes the

server state according to the renewable power incoming. It

uses power from the batteries when jobs are running and there

is not enough renewable power. Workload reactive turns on

the servers according to the job’s arrival. When there is no

job to start, it waits to turn off the servers using the DPM

technique [23]. Peak, Next, and Last policies are proposed

by [17]. Fig. 6 illustrates their main idea. The blue curve

is the usage plan. In this example, it saves some energy in

time step 1 (see the green square). So, it can reintroduce

this energy in future time steps (see the yellow squares). We

included a new policy named Workload, which compensates

where there is a higher difference between predicted demand

and envelope. They use the default implementation of EASY

backfilling (first sorting by bounded slowdown and second

sorting by jobs size) to schedule. These policies compensate

for the power changes, trying to approximate the target level.

All implementations (BEASY, Follow plan, Power reactive,

Workload reactive, Peak, Next, Last, and Workload) kill the

jobs when the SoC goes bellow 20%.

Fig. 6. Compensation policies [17].

We have divided the experiments into two parts. The first

part aims to analyze the decisions in critical scenarios. To

do so, we have taken two workloads from the Metracentrum

dataset with the size of three days [24]. One of them has

jobs arriving mainly on the first day, and the second one

has jobs arriving mainly on the third day. Then, we have

generated one profile with the renewable production of three

days in the city of Toulouse from the Renewable Ninja website

[25], [26]. After that, we have created an offline plan for

each workload, using the same power production. We have

created this plan using the MILP proposed by [16]. Finally,

we introduce noise in the workloads and power production

emulating the difference between offline and online. For the

workload, we have applied a Gaussian noise in the job inter-

arrival and duration. Considering the power production, we

have taken two cases: worst-case and best-case. As presented

in Fig. 4, we have two boundaries in a prediction. Best-

case takes the higher power from the uncertainty interval,

and the worst-case takes the lower power production from

the uncertainty interval. Fig. 7 illustrates the power demand

(workload) and production (profile) without and with noise.

Combining both workloads with these power profiles, we have

4 cases to evaluate all the algorithms:

1) Profile best-case and workload in the beginning;



2) Profile best-case and workload in the end;

3) Profile worst-case and workload in the beginning;

4) Profile worst-case and workload in the end;

Fig. 7. The power demanded and production for the critical scenarios.

The second part of our experiments consists of taking ten

tuples of workloads and profiles and creating a plan for each

one. Fig. 8 shows the power production and demand for these

cases. Then, we create ten new profiles and workloads for each

tuple, adding different Gaussian noises. Therefore, we have

100 executions (ten plans with ten noises each). Differently

from the first part, in this part, the power profile can have any

value between lower and higher prediction boundaries for each

time step. These experiments reveal the performance of our

algorithm on 100 average cases. In both parts, we introduce

uncertainty in the walltime given by the user in the same

way as [27]. To do that, we equally divided the jobs into

five groups. The jobs of the first group calculate the walltime

by multiplying the (real) execution time by 5, the second by

3.333333333, the third by 2, the fourth by 1.428571429, and

the last one by 1.111111111. This uncertainty complicates the

BEASY scheduling decisions but it is more realistic. So, we

introduced noises in jobs arrival, execution time, and walltime.

Fig. 8. The power demanded and production for different scenarios.

The following sections will analyze the results from three

aspects: Jobs finished, real SoC at the end of the time window,

and wasted energy. As mentioned before, the objective is to

increase the number of finished jobs and reduce the number

of killed jobs. It is possible to have a high number of finished

jobs and a high number of killed jobs in aggressive scheduling,

where the scheduler starts jobs even if it is not possible to

finish them. Also, the algorithms must end the time window

with SoC as close as possible to the planned. That means the

algorithms can not ”cheat” using more battery than planned.

Finally, we verify how much energy was wasted. We consider

wasted energy the energy expended not computing finished

jobs, englobing, for example, the energy used in killed jobs,

turning on/off servers, and maintaining idle servers turned on.

A. Results - Critical scenarios

This section presents the results for each critical scenario,

finishing with a global analysis. For each scenario, we show

three graphs (for example, Fig. 9). First, a graph showing the

impact on the jobs. This graph shows:

1) Finished: Jobs that finished completely their computa-

tion before the walltime;

2) Postponed: Jobs postponed to the next time window;

3) Reached walltime: The jobs that reached the walltime

because they do not finish all the computation due to

the servers speed;

4) Not completely finished: The jobs that were not finished

completely because we arrive at the end of the time

window and they are still running;

5) Killed: The killed jobs.

In the second graph, we demonstrate how far the state of

charge is from the target level at the end of the time window.

In the last graph, we illustrate the wasted energy.

1) Profile best-case and workload in the beginning: Fig. 9

illustrates all the results obtained for the execution with the

profile best-case and workload in the beginning. This scenario

has more space for improvement because the majority of the

jobs arrive on the first day, and we have more energy to finish

them than predicted. So, the heuristics have time to decide

when to start the jobs and how to approximate the target

SoC. The best algorithm is BEASY, with 99.01% finished jobs.

Also, the jobs not finished are not killed but postponed. It

ends a little above the target SoC. Regarding wasted energy,

it is possible to notice that BEASY better expends the energy

received, resulting in a saving of 35.33% compared with the

second-best wasted energy result (Workload reactive).

Fig. 9. Results in the scenario with profile best-case and the workload in
beginning.



Follow plan is the worst in jobs finished, killing several jobs.

It ends with 20% more battery than the target, showing that

it could use this power to avoid killing jobs. Considering the

wasted energy, it is the second worst. These results highlight

the need for adaptations in the plan. Power reactive has the

worst wasted energy since it turns on servers even if it is not

necessary. It also does not finish almost 10% of the jobs, using

20% more battery. Workload reactive execution kills 8.05% of

jobs. This heuristic is too aggressive and puts all jobs to start

as soon they arrive. So, it dries the battery too fast. Fig. 10

compares the state of charge of the Workload reactive and

BEASY. Workload reactive dries too fast the battery and needs

to kill the jobs, while BEASY is conservative. Peak, Next, Last,
and Workload policies have good finished jobs, finishing with

a good battery level and not bad wasted energy. However, they

kill some jobs since they do not validate all the execution.

Fig. 10. Comparison between the state of charge of Workload reactive and
BEASY. The red arrow indicates where Workload reactive kills some jobs.

2) Profile best-case and workload in the end: The second

case is more complicated than the previous one. Here, the

majority of the jobs arrive on the last day of the time window.

So, the algorithms have a shorter time to schedule them. Fig.

11 illustrates the results. Follow plan has the second worst

finished jobs and the worst killed jobs, even finishing with

20% more battery. The Next policy stays close to the plan since

it makes the compensations in the next possible time step. It

is possible to notice that it has a similar result, but kills fewer

jobs than Follow plan. Power reactive still wastes more energy

than the other algorithms and uses more battery. Workload
reactive has perfect finished jobs and very good wasted energy.

It uses 6% more battery than the target, which helps it to run

more jobs. This is the best case for Workload reactive because

it can stock a lot of energy in the first two days and expend

all in the third day. This behavior explains why it finishes all

the jobs and expends energy well. Last policy also has good

results because it put all the power in the best moment to use

it. However, it can dry the battery too fast and kill some jobs.

BEASY is the second best in finished jobs and wasted energy.

It does not kill any job, but it can not guarantee to finish some

jobs, so it postpones them. Here, BEASY wasted 22.10% more

energy than Workload reactive, but it wasted less than all the

other heuristics.

3) Profile worst-case and workload in the beginning: The

third case is with the worst-case profile and workload in the

beginning. In this case, the algorithms have time to schedule

the jobs but receive less energy coming from renewable. So,

besides finding the best moment to place the jobs, they must

adapt their power usage. Fig. 12 demonstrates the results. It

is possible to notice that Follow plan, Power reactive, and

Fig. 11. Results in the scenario with profile best-case and the workload in
end.

Workload reactive use a lot more battery (13.12%, 28.17%,

and 17.60%, respectively). Even so, they are among the

executions that killed more jobs (Workload reactive finishes

with more than 20% of killed jobs).

Fig. 12. Results in the scenario with profile worst-case and workload in the
beginning.

Power reactive finishes more jobs than the other heuristics

but kills more than 14% of jobs. Last, Next and Peak kill less

than 10% of jobs, but only Next finishes more than 80% of the

jobs. BEASY is the second best in finished jobs (very close to

the best one), killing less than 1%. This result is outstanding

in a scenario with less energy than predicted, showing the

efficacity of the conservative approach in this case. Also,

BEASY has the best result on wasted energy, reducing by

31.17% compared to the Next (the second-best). This is a

scenario where it is essential to use energy efficiently. Finally,

this heuristic has the best battery level at the end of the time

window but is very close to the Peak, Next, Last, and Workload
policies.

4) Profile worst-case and workload in the end: The last

case is with the profile worst-case and the jobs arriving in

the end of the time window. Fig. 13 shows the results. Again,



Follow plan, Power reactive, and Workload reactive are far

from the battery target level. Follow plan is the best in the

finished jobs but the worst in killed jobs. Workload reactive
has the second-best finished jobs but with almost 10% of

killed jobs. Both results are explained because they used more

battery than the other executions. Among the executions that

respected the battery level, BEASY has the higher finished jobs

and lower killed jobs. Also, it wastes less energy than all the

other algorithms (19.70% less than the second-best, Workload
policy). Again, it is an outstanding result in a critical scenario.

Fig. 13. Results in the scenario with profile worst-case and workload in the
end.

5) Conclusions of critical cases: After presenting all results

of the critical cases, this section consolidates our discussion

about them. Regarding the number of killed jobs, BEASY has

the overall best results by far. This heuristic can identify when

it is possible to execute more jobs and when it is better to be

conservative. Since our data center is in a power constraint

environment, sometimes it is not possible to run everything.

Postponing the jobs allows us to plan the next time window

considering them. For example, the next time window could

use more power coming from hydrogen to deal with these jobs.

In an online way, it is not possible to change the hydrogen

usage since it has a warm-up time. Also, offline can consider

the seasonality of renewable production in its decision (e.g.,

spend more energy from hydrogen in winter and recharge it in

summer). Even postponing jobs, BEASY is always between the

top 3 finished jobs. While the other algorithms (mainly Power
reactive and Workload reactive) do not respect the battery level

at the end, BEASY has good results arriving with close final

SoC. Finally, BEASY generally wastes less energy than the

other algorithms. This result is crucial mainly in cases with

less energy to use.

B. Results - Average cases

After discussing the critical cases, this section discusses the

average cases. As mentioned in Section V, we have taken ten

different profiles and workloads. Fig. 14 presents the results

of the ten executions. Finished jobs, battery level, and wasted

energy are the same metrics as presented in the previous

section. The killed jobs graph considers the jobs that reach

the walltime, were not completely finished, or were killed.

Like in the critical cases, BEASY presents the lowest number

of killed jobs (mean of 0.67%). Regarding finished jobs, it

has the second-best result with a mean of 93.29%. Workload
reactive is the best one in this metric with a mean of 97.27%.

Fig. 15 compares the state of charge of Workload reactive
and BEASY in the execution where Workload reactive killed

several jobs. Workload reactive almost killed jobs around time

step 400, but the SoC stays equal to or above 20%. At the end

of the time window, it kills several jobs.

Fig. 14. Results in 100 executions.

Fig. 15. State of charge in one of the scenarios. The red arrow indicates
where Workload reactive kills some jobs.

Workload reactive could not avoid the 20% threshold,

resulting in several killed jobs. BEASY avoids this threshold.

Comparing the number of jobs killed, Workload reactive has

19% of the executions above 5% of killed jobs, while BEASY
has none. This result shows that BEASY can maintain the state

of charge in control. On the other hand, Workload reactive has

the two worst number of jobs killed among all executions.

Power reactive has the third-best number of completed jobs

but with also 19% of the executions above 5% of killed jobs.

All the other executions have a higher number of killed jobs,

finishing near 90%. The worst % of finished jobs is Next with

an average of 86.72% and the worst killed jobs is Follow plan

with 8.96%.

Considering the battery target level, BEASY has good levels

since it is near the target level (average of 54.47%). Also,

it does not vary a lot (standard deviation of 7.84%). The

best executions in this metric are the policies (Peak, Next,
Last, and Workload), always around 50% and with a very low

standard deviation. But, we could see that they can not reduce



TABLE I
CONSOLIDATE AVERAGE RESULTS IN EVERY SCENARIO.

Scenario Metric Follow plan Power reactive Workload reactive Peak Next Last Workload BEASY

Profile best-case
and

workload in
beginning

Finished jobs 8th 7th 6th 4th 5th 2nd 3rd 1st

Killed jobs 8th 7th 6th 4th 5th 2nd 3rd 1st

SoC 1st 8th 3rd 6th 7th 4th 5th 2nd

Wasted energy 7th 8th 2nd 4th 6th 3rd 5th 1st

Profile best-case
and

workload in end

Finished jobs 7th 4th 1st 6th 8th 3rd 5th 2nd

Killed jobs 8th 5th 1st 6th 7th 4th 3rd 1st

SoC 1st 8th 7th 3rd 4th 5th 6th 2nd

Wasted energy 5th 8th 1st 6th 7th 3rd 4th 2nd

Profile worst-case
and

workload in
beginning

Finished jobs 3rd 1st 5th 6th 4th 7th 8th 2nd

Killed jobs 7th 6th 8th 3rd 2nd 4th 5th 1st

SoC 6th 8th 7th 3rd 2nd 4th 5th 1st

Wasted energy 7th 8th 6th 3rd 2nd 4th 5th 1st

Profile worst-case
and

workload in end

Finished jobs 1st 4th 2nd 5th 6th 7th 8th 3rd

Killed jobs 8th 3rd 6th 2nd 7th 5th 4th 1st

SoC 6th 7th 8th 1st 3rd 5th 4th 2nd

Wasted energy 7th 8th 6th 3rd 5th 4th 2nd 1st

100 average cases

Finished jobs 7th 3rd 1st 6th 8th 4th 5th 2nd

Killed jobs 8th 6th 2nd 4th 7th 3rd 5th 1st

SoC 1st 8th 3rd 6th 7th 4th 5th 2nd

Wasted energy 4th 8th 1st 5th 7th 3rd 6th 2nd

the killed jobs as much as BEASY. Workload reactive, Power
reactive, and Follow plan have a large target level variance.

Fig. 15 shows an example of how badly Workload reactive
manages the battery. Workload reactive kills several jobs when

the battery is lower than 20%. BEASY avoids this threshold

and could maintain the jobs running. Workload reactive and

Follow plan have more battery than the target (average of

53.92% and 59.09%, respectively) but with a higher variation

(standard deviation of 18.50% and 13.64%). Power reactive
has the worst result, with an average of 40.03% and a standard

deviation of 16.78%. Finally, BEASY and Workload reactive
have the best result in wasted energy, well below the other

executions. Workload reactive is very energy aware since it

tends to maintain running only the servers needed due to its

DPM technique. So, being close to the same result is quite

outstanding for BEASY. All these results show that BEASY
has excellent all-around performance. It can balance power

and IT decisions, expending energy wisely among the different

simulations.

Table I presents a consolidation of all results over the

different tested scenarios. The top-3 results on each metric

for each scenario are highlighted in green and the bottom-3

in red. Killed jobs are: killed jobs + reach the walltime + not

completely finished. For SoC, we consider the best results as

the higher real SoC at the end of the time window. This table

highlights the excellent results of BEASY over the different

experiments, where it finishes in top-3 in all cases. BEASY is

always the best one in killed jobs. It is the third-best in the

finished job one time. However, in the same case, the first

(Follow plan) and second-best (Workload reactive) finished

job metrics have the worst and third-worst killed jobs. In the

cases where BEASY has the second-best finished jobs metric,

the algorithm with the best one has bad battery management.

For example, Workload reactive is the best one in profile best-

case and workload in end but has the second-worst real SoC at

the end of the time window. In 100 average cases, Workload
reactive appears in third place in SoC, but we saw in Fig.

14 that it has a large variance in SoC. Excluding BEASY, all

the other algorithms have at least one result at the bottom-

3. It is possible to notice that just following the offline plan

(Follow plan) is not a good option, with several metrics at

the bottom-3. Reacting to the power (Power reactive) is even

worst. Workload reactive has some good results, and, due to

the DPM technique, it is not too energy aggressive. However,

it can not manage the storage well, sometimes killing jobs and

sometimes drying the battery. Regarding the policies, the Last
has intermediate results, but with no result as the best one.

VI. CONCLUSION

A renewable-only data center introduces several elements,

such as batteries, hydrogen, wind turbines, and solar panels.

It demands a plan for the following days using workload and

weather predictions. However, just following this plan may

not be sufficient. This work presented a heuristic for online

adaptations to change an offline plan, aiming to improve QoS

and deal with power fluctuations. The results demonstrated that

simply following the offline plan or only reacting to the online

events is not enough due to the variance in workload and

renewable production. BEASY had an excellent overall wasted

energy, the lowest number of killed jobs, and in top-3 finished

jobs compared to the state of art algorithms. It achieves these

outstanding results with the state of charge at the end of the

time window near the target level. Future work will include a

more complete job description (I/O, network communication,

etc). Also, we will evaluate BEASY with new application types

(e.g., services, streaming) and the impact of reintroducing

killed jobs for execution. Finally, we can introduce energy

flexibility, allowing the battery to finish around the target level

(e.g., ±5%).
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linear programming approach to optimize the hybrid renewable energy
system management for supplying a stand-alone data center,” in 2019
Tenth international green and sustainable computing conference (IGSC).
IEEE, 2019, pp. 1–8.

[17] I. F. de Nardin, P. Stolf, and S. Caux, “Analyzing power decisions in data
center powered by renewable sources,” in 2022 IEEE 34th International
Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD). IEEE, 2022, pp. 305–314.

[18] L. Naveen and H. Mohan, “Atmospheric weather prediction using
various machine learning techniques: a survey,” in 2019 3rd Interna-
tional Conference on Computing Methodologies and Communication
(ICCMC). IEEE, 2019, pp. 422–428.

[19] M. Masdari and A. Khoshnevis, “A survey and classification of the
workload forecasting methods in cloud computing,” Cluster Computing,
vol. 23, no. 4, pp. 2399–2424, 2020.

[20] B. Xu, A. Oudalov, A. Ulbig, G. Andersson, and D. S. Kirschen,
“Modeling of lithium-ion battery degradation for cell life assessment,”
IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1131–1140, 2016.

[21] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability, work-
loads, and user runtime estimates in scheduling the ibm sp2 with
backfilling,” IEEE transactions on parallel and distributed systems,
vol. 12, no. 6, pp. 529–543, 2001.

[22] J. Lelong, V. Reis, and D. Trystram, “Tuning easy-backfilling queues,”
in Job Scheduling Strategies for Parallel Processing: 21st International
Workshop, JSSPP 2017, Orlando, FL, USA, June 2, 2017, Revised
Selected Papers 21. Springer, 2018, pp. 43–61.

[23] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design tech-
niques for system-level dynamic power management,” IEEE transactions
on very large scale integration (VLSI) systems, vol. 8, no. 3, pp. 299–
316, 2000.

[24] D. Klusáček, Š. Tóth, and G. Podolnı́ková, “Real-life experience with
major reconfiguration of job scheduling system,” in Job scheduling
strategies for parallel processing. Springer, 2015, pp. 83–101.

[25] S. Pfenninger and I. Staffell, “Long-term patterns of european pv output
using 30 years of validated hourly reanalysis and satellite data,” Energy,
vol. 114, pp. 1251–1265, 2016.

[26] I. Staffell and S. Pfenninger, “Using bias-corrected reanalysis to simulate
current and future wind power output,” Energy, vol. 114, pp. 1224–1239,
2016.

[27] S. Takizawa and R. Takano, “Effect of an incentive implementation
for specifying accurate walltime in job scheduling,” in Proceedings of
the International Conference on High Performance Computing in Asia-
Pacific Region, 2020, pp. 169–178.


