
Performance Tuning for GPU-Embedded Systems:
Machine-Learning-based and Analytical

Model-driven Tuning Methodologies.

Adrián P. Diéguez
Lawrence Berkeley National Laboratory

Berkeley, CA, USA

aperezdieguez@lbl.gov

Margarita Amor López
University of A Coruña

A Coruña, Spain

margamor@udc.es

Abstract—GPU-embedded systems have gained popularity
across various domains due to their efficient power consumption.
However, in order to meet the demands of real-time or time-
consuming applications running on these systems, it is crucial
for them to be tuned to exhibit high performance. This paper
addresses the issue by developing and comparing two tuning
methodologies on GPU-embedded systems, and also provides
performance insights for developers and researchers seeking to
optimize applications running on these architectures. We focus
on parallel prefix operations, such as FFT, scan primitives,
and tridiagonal system solvers, which are performance-critical
components in many applications. The study introduces an ana-
lytical model-driven tuning methodology and a Machine Learning
(ML)-based tuning methodology. We evaluate the performance
of the two tuning methodologies for different parallel prefix
implementations of the BPLG library in an NVIDIA Jetson
system, and compare their performance to the ones achieved
through an exhaustive search. The findings shed light on the
best strategies for handling the open challenge of performance
portability for major computational patterns among server and
embedded devices, providing practical guidance for offline and
online tuning. We also address the existing gap in performance
studies for parallel computational patterns in GPU-embedded
systems by comparing the BPLG performance against other state-
of-the-art libraries, including CUSPARSE, CUB, and CUFFT.

I. INTRODUCTION

In the realm of HPC, performance portability has emerged

as a paramount concern as applications are increasingly de-

ployed across diverse computing platforms. The ability to

achieve optimal performance regardless of the underlying

architecture is crucial for attaining efficient utilization of

computational resources and maximizing the scalability of

applications. This need for performance portability has exac-

erbated even more pronounced with the rise of heterogeneous

systems. GPU-embedded systems combine high-performance

computing capabilities with embedded architectures, which

have found extensive applications in domains such as image

processing, motion planning, signal processing and the In-

ternet of Things (IoT). Unfortunately, not many performance

studies have been published about GPU-embedded platforms,

earlier studies [1] show that choosing the optimal performance

parameters for different computation patterns running on an

embedded GPU can be challenging.

Auto-tuning can tackle this search by exploring a subset

of the configuration search space through empirical measure-

ments and/or predictive models to identify the best runtime

configuration. An exhaustive search, which evaluates all con-

figurations, guarantees finding the optimal configuration, but

can be infeasible for modern applications. The predictive
search can be divided into the traditional analytical model-
driven search and a Machine-Learning-based search. In the

former, an expert builds the model with performance heuris-

tics, but results are strongly correlated to the quality of the

performance model. In the later, the relationship between

performance and tuning parameters can be cast as a black-box

model, but sampling the entire space for getting training data

can be expensive. Finding the best strategy for performance

tuning is still an open challenge for many computational

patterns. For instance, Parallel prefix operations [2], such

as Fast Fourier Transform (FFT), the scan primitive and

tridiagonal system solvers, are an example of performance-

critical components used in many GPU-embedded applications

that must be tuned.

This work has two main contributions: it compares the

efficiency of two tuning methodologies on embedded systems

for performance tuning, an open challenge in computer sci-

ence, and evaluates the performance of different state-of-the-

art libraries applied to different parallel prefix operations on an

NVIDIA Jetson system, which lacks performance benchmarks

for the explored kernels. For achieving the first objective, this

work uses the existing BPLG library [3] where performance

parameters for the FFT, the scan primitive and tridiagonal-

system solver implementations are exposed as template ar-

guments to be defined by users for each problem size and

operation. In order to tune these values, we developed two tun-

ing methodologies: an analytical model-driven tuning method-

ology extended to GPU-embedded systems; and a machine

learning (ML-)based tuning methodology employing Bayesian

optimization (BO). To target our second goal, we developed a

benchmark to evaluate the performance achieved with the con-

figurations proposed by each methodology, comparing them

with state-of-the-art libraries such as CUSPARSE, CUB, and

CUFFT.

A. Related Work

Regarding performance studies about GPU-embedded sys-

tems, previous works, such as those in [4]–[6], have provided

valuable performance insights into the Jetson Tegra TK1. In

[7], a performance characterization of both the Jetson TK1

and TX1 is conducted using roofline models, focusing on

a matrix-multiplication application. However, the simplicity

of the matrix multiplication fails to capture the complexi-

ties of real-world workloads. In [8]–[10], machine learning

applications on the Jetson TX1, Nano, and AGX Xavier

are respectively explored, offering significant performance

insights but with a narrow focus on specific machine learning

tasks. While some works have emphasized energy efficiency,

comprehensive performance benchmarking has been lacking,

except for [11], which also includes a performance variability

analysis for the Jetson AGX Xavier. Notably, few studies have

focused on performance, and the existing ones mostly rely on

benchmarking approaches rather than developing performance

models that can be applied to other embedded platforms.

In the field of desktop and server GPUs, there are examples

of empirical tuning projects for the FFT such as [12]–[18].

GPU tridiagonal system solvers (TS) have been proposed

in [19] and [20]. Nevertheless, these TS approaches do not

exhibit significant optimization for modern architectures. More

recent GPU TS can be found in [21]–[27], while [28], [29]

introduce optimized GPU implementations for the scan prim-

itive. Some tuning libraries, such as NVIDIA’s CUFFT [30]

for FFT, CUSPARSE [31] for tridiagonal system solvers, and

the CUB library [32] for the scan primitive, provide efficient

implementations and are considered the state-of-the-art for

these operations. In the realm of server GPU architectures,

performance modeling has been explored in [33], while we ex-

tend their outlined principles to the context of GPU-embedded

systems in this work, as detailed in the subsequent sections.

With respect to generic autotuning, where the goal is to

tune any objective function rather than focusing on specific

algorithms or platforms, we can find autotuners based on

empirical searches such as OpenTuner [34] that use empirical

approaches, being very slow. Some other generic auto-tuners,

such as Kernel Tuner [35], implement various search optimiza-

tion algorithms, but most of them have been demonstrated

to not be more efficient than a random search [36]. Other

research efforts have developed machine learning models [37]–

[40], but using random sampling indiscriminately to build the

surrogate model. Instead, Bayesian optimization identifies the

most informative candidates to train the surrogate model and

achieves the same accuracy with fewer samples [41] [42].

Two generic auto-tuners, GPTune [43] and DeepHyper [44]

use Bayesian optimization and are recognized as cutting-edge

autotuners for HPC applications.

II. THE GPU-EMBEDDED ARCHITECTURE

This work uses a NVIDIA Jetson TX1 as underlying

platform for testing the proposed tuning methodologies on

GPU-embedded platforms. While the NVIDIA Jetson TX1

may not be the latest architecture from NVIDIA, it can

Fig. 1: NVIDIA’s Jetson TX1 architecture design

still serve as a relevant and valuable target platform for our

studies: (i) it gained significant popularity when it was first

released, and it still continues to have a strong user base in

various applications and industries; (ii) The Jetson TX1 offers

a cost-effective solution for GPU-embedded development, its

affordability makes it accessible to a wide range of users;

and (iii) while it may not have the latest capabilities of

newer architectures, it can still provide a useful baseline for

performance comparison and by demonstrating optimizations

on this platform, one can highlight the potential gains on more

recent architectures. Therefore, the methodologies developed

for performance tuning on the Jetson TX1 can be used

on other GPU-embedded platforms, allowing this work to

benefit a wider audience interested in performance tuning and

optimization in the context of GPU-embedded computing.

The NVIDIA Jetson TX1 module has a GM20B Maxwell

GPU [45] in addition to a quad-core 1.91 GHz 64-bit ARM

Cortex-A57. They share 4 GB of LPDDR4 memory and 16

GB of eMMC flash storage. It has 1 Gigabit Ethernet interface

and six CSI camera interfaces. It also supports wireless with

802.11ac Wi-Fi and Bluetooth. This Maxwell GPU has two

Streaming Multiprocessors (SM), each with 128 CUDA cores,

providing up to 512 GFLOPS in single precision. It also

contains a 256-KB L2 cache; whereas the A57 CPU has

a 2-MB L2 cache. Although this board contains a second-

generation Maxwell GPU, it should be observed that it only

has 2 SM and 256-KB L2 cache, in comparison to the 16 SMs

and 2048-KB L2 cache, as well as the high bandwidth, of a

second-generation Maxwell GeForce card. This architecture

also provides 64 KB of shared memory per SM, although a

maximum of 48 KB per threadblock. The maximum number

of warps per SM is 64, and the register file contains 65,536

simple-precision registers; but only 32 warps and 32,768

registers, respectively, can be used at most per threadblock.

The total number of threadblocks executed in each SM is 32.

The SoC architecture is showed in Figure 1. Finally, the TX1

module also contains a quad-core ARM Cortex A53 CPU,

which is not directly accessible to software.

III. PARALLEL PREFIX OPERATIONS ON A GPU

Parallel prefix algorithms, which are well-suited for GPU

architecture, exhibit regular characteristics. These algorithms

have static communication patterns that can be expressed

as linear functions with the element index as a variable.

Additionally, the resulting elements are computed based on

combinations of other elements. A parallel prefix algorithm

[2] solves a problem of size N = rn in K steps, where r
is a power of two called radix. The parallel prefix algorithm

is depicted by a directed acyclic oriented graph called prefix

circuit. The computations are performed by the Node operator,

responsible for executing the required operation on the given

elements. This operator is represented by small circles in prefix

circuits shown in Figure 2. Specifically, the Node operator

is defined by the fan in, the number of input data, and the

fan out, the number of output data. The radix r, which is given

by the algorithm pattern, has a direct bearing on the number of

steps taken, K. Thus, r and n usually appears in the expression

that calculates K. In general, most of the parallel prefix

algorithms use binary Node operators and employ r = 2;

hence, in most cases N = 2n. As a set of representative

parallel prefix workloads, we have chosen: the scan primitive,

the Fast Fourier Transform (FFT), and tridiagonal systems

solvers.

In order to apply any tuning methodology, kernels must

expose their performance parameters to be tuned. We have

chosen the BPLG library [3], which implements the selected

parallel prefix operations. This tuning library is composed

of a set of CUDA skeletons, also called building blocks,

written as templates. This allows the user to customize them

with user-defined datatype and performance parameters. The

tunable performance parameters by the CUDA skeletons are

the number of fan in elements per Node operator, the number

of Node operators performed per thread, the threadblock size

and the amount of shared memory per threadblock. Their

optimal values vary for each problem size, algorithm, and

target architecture. In addition to these four parameters, some

skeletons allow the user to make other choices, for example

selecting working on registers (shuffle instructions) instead

of shared memory, or declaring the offset between the Node

operators in the prefix circuit to be loaded by each thread.

Composing this CUDA skeletons enables the solution of the

following parallel-prefix operations:

• Tridiagonal system solvers. A tridiagonal system is

composed of N equations Ei: aixi−1+bixi+cixi+1 = di,
with a0 = cN−1 = 0. The bi coefficients constitute the

main diagonal of the coefficient matrix, whereas ai and ci
are known as the lower and upper diagonals, respectively.

The BPLG library implements different solvers: Cyclic

Reduction (CR) [46], Parallel Cyclic Reduction (PCR)

[47], Ladner-Fischer (LF) [27] and Wang&Mou (WM)

algorithm [48], whose patterns are represented in Figure

2.

• Scan Operator. This operation replaces each element

with the accumulated sum from the first element up to it-

(a) Cyclic Reduction pat-
tern.

(b) Parallel Cyclic Reduction
pattern.

(c) Stockham pattern. (d) Ladner-Fischer pattern.

(e) Wang&Mou pattern. (f) Kogge-Stone pattern.

Fig. 2: Different prefix circuits for N = 16.

self. Within the BPLG library, two distinct algorithms can

be utilized to perform this computation: a reduction based

on the Ladner-Fischer (LF) pattern and another based on

the Kogge-Stone (KS) pattern. Figure 2 illustrates both

patterns.

• Fast Fourier Transform (FFT). BPLG provides a tuning

implementation of the complex FFT based on the Stock-

ham algorithm (see Figure 2), it also allows tuning the

radix of the pattern, reducing the number of overall steps.

IV. TUNING METHODOLOGIES ON GPU-EMBEDDED

SYSTEMS

Rather than focusing on functional portability, where

portable languages can be used among different hardware but

not ensuring optimal performance results, this work focuses on

finding the optimal performance parameters for each platform,

since GPU-embedded systems often execute real-time or time-

consuming applications where performance is critical.

In the context of this paper, it is important to highlight

the distinction between online and offline autotuning and

how analytical-based and ML-based models perform in these

scenarios. Online autotuning refers to the process of dynam-

ically optimizing system parameters during the runtime of

an application, while offline autotuning involves optimizing

parameters prior to the actual execution of the application.

Analytical-based models work well for online autotuning

as they provide immediate optimal configurations, especially

suitable for real-time applications. On the other hand, ML-

based models may introduce an overhead when used for

online autotuning, as it requires multiple evaluations to train

the surrogate model. However, ML-based models can still be

valuable for online autotuning when the time spent on creating

the training dataset can be amortized over multiple invocations

of the same routine or when the algorithm is iterative, allowing

for better performance in subsequent executions.

It is important to emphasize that the problem sizes con-

sidered in these methodologies are limited to those supported

by the BPLG implementation, specifically small and medium-

sized problems that can fit within the CUDA shared memory.

As previously mentioned, these methodologies are applicable

to any NVIDIA Jetson architecture.

A. An Analytical Model-driven Tuning Methodology for the
NVIDIA Jetson

In [33] [49], an analytical tuning methodology for small-

medium parallel-prefix problems on CUDA desktop and server

GPUs was presented, while our work extends this methodol-

ogy to tune embedded GPUs. When considering performance

modeling for GPU-embedded systems, several factors come

into play, such as the limited number of SMs and reduced

memory bandwidth. GPU-embedded systems necessitate a

distinct approach to performance modeling. Specifically, the

original methodology for desktop and server GPUs looks

for maximizing both SM block and warp parallelism, and

balancing them in the cases where is not possible to achieve

their maximum values. Nevertheless, keeping higher warp

occupancy is more important in CUDA embedded GPUs. By

keeping a higher warp occupancy compared to having a high

number of active thread blocks per SM, GPU performance

can be maximized by effectively hiding memory latency and

minimizing the impact of memory stalls, leading to improved

overall throughput and resource utilization.

1) Background: We adhere to the identical set of per-

formance premises and parameters established in [33]: (i) a

reduction of high-latency communications; (ii) a high warp

occupancy to hide latency, also taking into account a high

block parallelism rate per SM; and (iii) a high granularity of

work performed by threads (high instruction level parallelism),

being aware of register consumption. The attainment of these

premises can be accomplished by specifying certain values

to the set of performance parameters exposed within the

BPLG library: S, the number of elements stored in shared

memory per threadblock; L, which is the number of threads

per threadblock; and P which is the number of elements

processed by each thread. They are also related by S = P ×L
(except when shuffle operations can replace the communica-

tion pattern based on shared memory). These three parameters

are represented by the tuple (S, P, L) and their values depend

on both the algorithm, the target architecture and N . Also, this

methodology concentrates on batch execution to effectively

utilize all available GPU resources, where each invocation

to the library simultaneously executes G batches of size

N = rn, r power of two. The application of the existing

performance premises can be summarized in the following

manner. The first premise looks for implementing coalescing

patterns to achieve the maximum memory bandwidth. This is

crucial in embedded GPUs where the memory bandwidth is

reduced. Threads loading Node operators in a strided manner

can help to achieve this. Regarding the second premise,

GPU parallelism can be determined in terms of the number

of threadblocks per SM (SM block parallelism), or by the

number of warps per SM (SM warp parallelism). A trade-

off must be sought between them depending on the problem

features. The number of warps per SM, WSM , is given by

the expression: WSM = Min(Wmax,WB × Ba), where the

maximum number of warps per SM, Wmax, is architectural

defined, and WB is the number of warps per threadblock

(WB = L/32 in current architectures). Additionally, the

consumption of registers and shared memory per threadblock

depends on the kernel design, and it affects on the number

of resident threadblocks per SM. Then, Ba is the number

of active threadblocks that are simultaneously executed per

SM: Ba = Min(Br, Bs, Bmax), where Br the number of

threadblocks limited by the registers available in the SM, Bs

the number of threadblocks limited by shared memory and

Bmax the SM maximum threadblock number that the hardware

allows. With respect to the third premise, one thread is

responsible for computing at least one Node operator from the

parallel prefix circuit, where P = max(fan in, fan out). It

may be interesting to process more Node operators per thread,

i.e. increase P , if extra register consumption does not affect

the SM occupancy. This would reduce the number of required

threads to compute the same amount of work. We could also

increase the radix r of the algorithm, when the communication

pattern allows it. Each thread would continue working with a

single Node operator, but its fan in and fan out values are

increased, and consequently P is also increased. This would

change the definition of the algorithm owing to N = rn,

decreasing the number of steps taken.

2) Extending the methodology embedded GPUs: As pre-

viously explained, keeping higher warp occupancy is more

important in CUDA embedded GPUs due to their higher

Warps

per

block

Regs

per

thread

Shared

memory

per block

Warp

occup.

SM

blocks

1 64 2048 50% 32

2 40 0 75% 24

2 32 2048 100% 32
2 40 2560 63% 20

4 32 4096 100% 16

4 40 5120 75% 12

8 32 8192 100% 8

8 40 10240 75% 6

16 32 16384 100% 4

32 32 32768 100% 2

(a) Parameters that maximize the number of
warps and blocks per SM in GM20B.

Size (S,P,L) values
CR, PCR, LF

N ≤ 64 (0, 2, 64)
N = 128 (0, 4, 64)
N > 128 (N, 2, N/2)

WM

N ≤ 128 (0, 4, 64)
N > 128 (N, 4, N/4)

(b) TS performance parame-
ters.

Size (S,P,L) values
LF pattern

N ≤ 256 (8192/N, 4, 64)
N > 256 (32, 4, N/4)

KS pattern

N ≤ 256 (8192/N, 4, 64)
N > 256 (32, 4, N/4)

(c) Scan performance parameters.

Size (S,P,L) values
N ≤ 256 (256, 4, 64)
N > 256 (N, 4, N/4)

(d) FFT performance parameters

Fig. 3: Performance Parameters for the parallel-prefix opera-

tions using the analytical-based search. The highlighted row

represents the configuration that maximizes both warp and

threadblock occupancy.

memory latency. Once a certain level of warp occupancy is

achieved, focusing on increasing instruction level parallelism

(ILP) can be particularly important for achieving optimal

performance compared to server GPUs where resources are

relatively more abundant. Thereby, increasing the radix, even

when slightly reducing Ba, reduces the number of taken steps

(consequently synchronization points) and increases ILP.

Following this idea, this work proposes a performance

guideline that we have found very accurate based on extensive

empirical observations on these devices. Specifically, our tun-

ing guideline for GPU-embedded systems can be summarized

as:

• Choose (S,L, P) values that achieve both WSM =
Wmax and Ba = Bmax. If this is not possible:

• Find the tuple that maximizes Ba, while the ratio

WSM/Wmax keeps between [60%−100%]. If this warp

occupancy ratio cannot be reached:

– Maximize the warp occupancy. If there are several

possibilities, take the one that maximizes P .

– In all previous steps, if the algorithm allows increas-

ing its radix r, then select the configuration that

increases r even when reducing Ba.

Considering the GM20B GPU and proposed guideline,

it is necessary to find the optimal values of the (S, P, L)
parameters for each algorithm. Figure 3 (a) summarizes

the parallelism and the resource consumption achieved by

different threadblock configurations. It should be observed

that the methodology will implicitly consider the impact of

the shuffle optimization on the premises by analyzing the

resulting S, P,B a,W sm to decide whether to use it or

not.

B. A ML-based Tuning Methodology for the NVIDIA Jetson

We use two sets of parameters participating in the tuning

search [40]: Input Parameters, A, which characterize the

input in terms of computational shapes or data layout of the

application; and Performance Parameters, B, the parameters

to be optimized for the target architecture. Given an input

aj ∈ A, our goal is to search for the optimal vector of per-

formance parameters xB ∈ B that meets argminxB∈B f(X) :
X = (aj , xB). Here, f(·, ·) denotes the objective function

that maps each configuration to a corresponding execution

time. Calculating derivatives for f is unfeasible [44], neces-

sitating actual evaluations of different configurations. In this

methodology, a Bayesian optimization search is employed,

as it has been shown to be effective in exploring promising

regions of the parameter space [50], thereby minimizing the

number of required evaluations. The procedural workflow for

Bayesian optimization is outlined as follows: First, a small set

of configurations are randomly sampled from the search space

and evaluated. The resulting data (configurations and execution

times) are added to a dataset that trains the surrogate model.

Based on the actual predictions of the surrogate model, the

acquisition function optimizes a score, guiding the selection

of the next configuration to be evaluated. The iterative process

continues until a stopping criteria is met. To do this Bayesian-

optimization search, we use the GPTune framework [43]

that uses the Linear Coregionalization Model (LCM) [51] as

surrogate model, and the Expected Improvement acquisition

function [52]. The BO search is an automated approach,

where the acquisition function evaluates configurations based

on the surrogate model’s prediction. However, it involves a

continuous back-and-forth interaction between the acquisition

function and the surrogate model to identify the most promis-

ing configurations iteratively.

As a summary of the process, the first step is to define

the corresponding Input Parameters, A, and Performance Pa-

rameters, B, together with any constraint in order to define

the search space. Then, this search space is explored with the

searching workflow, which orchestrates the search by calling

the Bayesian-optimization framework. The search is run for

each algorithm on the target platform until a user-defined

stop criteria is met. For our BPLG parallel-prefix search, the

Input and Performance parameters are described in Table I.

The problem size describes the input problem we are solving,

and its range of values depends on the BPLG implementation

for each operation. Regarding the performance parameters,

the range of taken values, which defines the search space,

also depends on the parallel-prefix algorithm implementation

being tuned, as it is seen in the next section. We also added

shuffle as a binary performance parameter that chooses an

alternative communication based on warp shuffles instead of

shared memory, when available. With respect to the stopping

criteria, we perform a sliding-window check and stop the

search when no progress has happened in the last iterations,

Input Parameters
Problem Size Any power of two allowed by the implementation.

Performance Parameters
S Elements stored in Shared Memory. A power of two.

P Number of elements processed by thread. A power
of two.

L
Number of threads per threadblock. Power of two
limited by max threads block.

r The applied radix in the prefix pattern. Power of two.

shuffle
If allowed, the use of shuffle communications instead
of Shared Memory.

TABLE I: ML-search: Input and Performance Parameters for

the BPLG library.

which saves extra evaluations once a good optimum has been

found. In this search, we stop the search if no progress within

the last 5 evaluations. Also, we set a high execution-time value

for those executions with configurations that are invalid or are

not finishing after 1 minute.

C. Tuning Larger Problem Sizes

Both methodologies can be extended to larger problem

sizes. When the problem size exceeds the capacity of shared

memory (N > S), collaborative computation among multiple

thread blocks becomes necessary. Two options are available

in recent CUDA versions to synchronize these thread blocks:

launching multiple kernels using a multi-kernel strategy or

utilizing Cooperative Groups (available from CUDA 9.0 on-

wards). However, the number of thread blocks that can partici-

pate in Cooperative Groups is limited by the maximum number

of resident thread blocks per Streaming Multiprocessor (SM).

The resource consumption of BPLG kernels can significantly

reduce the number of resident thread blocks per SM, resulting

in fewer threadblocks than the number required to complete

the collaborative computation. BPLG implements FFT for

problem sizes exceeding shared memory capacity, and our

work aims to tune this implementation as well.

In [53], an analytical model for tuning BPLG large-sized

operations was presented for desktop and server GPUs, em-

ploying a multi-kernel strategy for tackling large sizes. We

use the same premise, The number of kernels m needs to
be minimized, to address large sizes on CUDA-embedded

systems. If N = rn and S = rs, then the number of required

kernels m can be calculated as m = �n
s �. Once the optimal

S is determined using this expression, our previous guideline

for small to medium problems is applied to tune the (S, P, L)
and radix r values for each resulting kernel. The inclusion of

multiple kernels has introduced additional complexities in the

tuning procedure, as the (S, P, L)m values are interdependent.

The value of these parameters in one kernel impacts the

workload of others.

It is noteworthy to mention that the ML-based methodology

will treat the tuning process as a black box. We just have

to extend the parameter space, but the underlying intricacies

and interdependencies among kernels are transparent to this

purpose.

N
Required

evaluations

(S, P, L)
values

WM

64 20 (0, 4, 128)
128 15 (0, 4, 128)
256 15 (512, 4, 128)
512 5 (512, 2, 256)
1024 5 (1024, 4, 256)

(a) TS performance parameters.

N
Required

evaluations

(S, P, L)
values

LF-scan

64 10 (128, 2, 128)
128 15 (128, 4, 128)
256 10 (32, 4, 64)
512 10 (64, 4, 256)
1024 5 (32, 2, 512)
2048 5 (32, 4, 512)
4096 5 (32, 4, 1024)

(b) Scan performance parameters.

N
Required

evaluations

(S, P, L)
values

64 10 (256, 8, 32)
128 10 (512, 8, 64)
256 10 (256, 4, 64)
512 10 (512, 2, 256)
1024 5 (1024, 4, 256)
2048 5 (2048, 4, 512)
4096 5 (4096, 4, 1024)

(c) FFT performance parameters.

N Eval. N Eval.

2048 5 262, 144 15

4096 5 524, 288 25

8192 15 1, 048, 576 40

16, 384 10 2, 097, 152 35

32, 768 15 4, 194, 304 30

65, 536 20 8, 388, 608 40

131, 072 20

(d) Required evaluations for larger
FFT sizes

Fig. 4: Performance Parameters and required number of can-

didate evaluations for the parallel-prefix operations using the

ML-based search

V. FINDING THE BPLG PERFORMANCE VALUES WITH OUR

METHODOLOGIES

This section analyzes the resulting performance parameters

for each parallel-prefix operation when our methodologies are

applied. In all cases, data are in single precision. It is important

to note that, due to space constraints, we have only presented

the performance parameters obtained through the ML-based

search for a subset of the algorithms. In Section VI, we con-

sider all recommended performance configurations provided

by the ML-based search when computing performance metrics.

A. Tridiagonal System Solvers

Firstly, it should be pointed out that each element is an

equation composed of 4 simple-precision coefficients, and only

the WM prefix circuit allows modifying the radix definition.

With respect to the analytical-based tuning, the optimal con-

figuration which maximizes both block and warp parallelism,

following Figure 3(a), is achieved with L = 64 and fewer than

32 registers per thread (the bold 3rd row in table). Starting with

the CR prefix pattern and taking into consideration additional

variables and index calculation, P must be equal to 2 in order

to consume less than 32 registers per thread. When N ≤ 64,

each problem is solved with 32 threads and P = 2 elements

per thread. Thus, shuffle instructions can be employed within

the warp instead of shared memory. Please observe that each

threadblock is executed with L = 64 threads, thus 2 batches

are simultaneously solved. When N = 128, there are two

alternatives: either using P = 4, 32 threads per problem

(2 problems per threadblock) and shuffle communications;

or P = 2, with 64 threads per problem (one problem per

threadblock) and the use of shared memory to perform the

communications (128 el. ×4 coef. ×4 Bytes = 2048 Bytes).

In the first case, 63% of warp parallelism and 20 threadblocks

are achieved (4th row in Figure 3(a)); whereas the second case

obtains 100% of warp occupancy, but only 16 threadblocks

(5th row in Table) and less bandwidth in communications.

Following our performance recipe, the first alternative is

chosen. For the remaining problem sizes, (N > 128), shared

memory is needed for storing the problem data; thus S = N .

When S occupies more than 3072 bytes, the case of N > 128,

it is not possible either the maximum warp parallelism or

the maximum block parallelism, choosing the configurations

that meet the tuning strategy requirements. Due to the high

register consumption, P = 2 is established for these problem

sizes. The same tuning values are obtained for the PCR prefix

pattern. In the case of the LF prefix pattern, each element is

composed of two equations (2 × 4 × 4 bytes per element).

As the number of registers must not exceed 32, consider-

ing registers employed for additional variables, P must be

strictly 2, but the same performance parameters are obtained

despite of this restriction following Figure 3(a). Finally, WM

allows modifying the radix of the algorithm due to its regular

communication pattern. Hence, in the case of having several

reasonable configuration alternatives, increasing P must be

prioritized. Specifically, when N ≤ 128, (S, P, L) = (0, 4, 64)
is used, achieving 75% warp occupancy and 24 out of 32

threadblocks, performing shuffle communications within each

warp. For the remaining sizes, (S, P, L) = (N, 4, N/4) is

used. Figure 3(b) summarizes the selected parameters for each

algorithm and problem size.

Regarding the ML-based tuning, the methodology will ex-

plore tuning values within a valid range defined by the problem

and GPU architecture. In the case of threadblock size L,

multiples of the warp size within the 32 to 1024 range will be

explored. The elements per thread P are determined by register

pressure constraints, allowing values from the set {2, 4, 8}.

Meanwhile, the used shared-memory S can be as large as 2048
elements, corresponding to 32 KB per threadblock. The prefix

patterns CR, PCR and LF are restricted to a fixed radix value of

r = 2 due to their implementation. In contrast, the WM pattern

can expand its radix implementation, leading the ML-search to

explore the set r = 2, 4, 8. Notably, radix r consistently aligns

with the recommended P value. The shuffle parameter is

only allowed when the computation of each problem can be

performed within a warp, which releases the need of shared

memory by setting S = 0. Therefore, shuffle is explored

when N/P ≤ 32, otherwise shuffle = 0 is a constant. For

larger N sizes, where S = P×L and N ≤ S have to be met in

the implementation, a limited number of valid configurations

exist. This minimizes the evaluated candidates in the search.

Figure 4(a) shows the suggested configuration for the WM

algorithm together with the number of candidate evaluations

required to train the surrogate model. Here, r corresponds to

P , and shuffle optimization activates when S = 0.

B. Scan Primitive

BPLG implements the scan primitive with shuffle instruc-

tions where 32 elements per problem are stored in shared

memory. Examining Table 3(a), the maximum warp and block

parallelism is achieved with L = 64 and fewer than 32

registers per thread. Considering auxiliary variables and index

calculation, P must be less than or equal to 4. Additionally,

shared memory consumption per threadblock must be fewer

than 2048 bytes; thus, S ≤ 512 single-precision elements. As

L = 64 and P = 4, the number of problems per threadblock

can be expressed with 64
N/4 = 256/N . Since each problem

uses 32 shared memory elements, S = 32 × 256
N = 8192/N .

When N > 256, L has to be increased and only one problem

can be solved per threadblock, thus L = N/4 and S = 32.

The KS pattern obtains the same values by following the same

reasoning. Figure 3(c) summarizes the performance parameters

for the LF and KS prefix patterns.

With respect to the (S, P, L) exploration in the ML-based

tuning, the search space is similar to the one seen with

tridiagonal solvers. However, the radix of these algorithms

cannot be explored, while P can take any value from P =
{2, 4, 8, 16, 32}. Due to the given BPLG implementations,

shuffle is always set to one, and S = L/32. Therefore,

the ML-based tuning search only explores values for P and L
parameters, and when raising N , the amount of possible con-

figurations is highly reduced due to restrictions, leading to a

minimal number of candidate evaluations. Figure 4(b) displays

the suggested configurations for the scan LF algorithm.

C. Fast Fourier Transform (FFT)

The FFT communication pattern allows extending its radix.

Thus, increasing P reduces the number of computing steps,

internal communications and synchronizations. Referring to

Figure 3(a) as a point of reference once again, L = 64 should

be chosen. Using P = 4 exceeds the number of 32 registers,

but the benefits of having P = 4 are high in terms of reducing

computing steps, as mentioned in Section V-A. For N ≤ 256,

there are several problems being solved in each threadblock, as

many as 64×4
N . As S = P ×L and each element is composed

of two floats, S = 256 elements, achieving 75% of warp

parallelism. If S = 4096, it implies 4096×2×4bytes = 32KB
of shared memory per threadblock and leads to only one active

threadblock per SM. To avoid it, BPLG first exchanges the

real part, performing the computations, and then exchanging

the imaginary part, reducing the shared memory to 16KB per

threadblock. For the remaining sizes, L = N/4 and S = N ,

as Figure 3(d) shows.

Regarding the ML-based search, radix r can take any value

between r = {2, 4, 8, 16}, and consequently P = {2, 4, 8, 16}.

Also, shuffle is always set to 0, as BPLG does not support

shuffle communications for the FFT implementations. Consid-

ering 8 bytes per element and the explained shared-memory

multiplexing technique, S ≤ 8192 elements. Figure 4(c) shows

the achieved configurations for the FFT algorithm with the

ML-based search. It always coincides the suggested radix r
with the recommended P value, resulting in the omission of

the radix r in the Figure.

D. Larger Problem Sizes: FFT

We consider problem instances within the range of 4096 <
N ≤ 8, 388, 608 elements to represent this type of problems.

Starting with the analytical-based tuning, S must be equal to

2048 (the maximum number of elements allowed) to minimize

the number of required kernels with the multi-kernel strategy.

As 2048 = P × L, if we apply the given performance

guideline, then the tuple (2048, 8, 512) with radix-8 is chosen

as maximizes the number of active warps (75%) per SM over

other solutions for this equation. When N ≥ 524, 288, three

kernels have to be launched.

For small and medium problem sizes (N ≤ 4096), the ML-

based search could be deemed overkill, as a exhaustive search

with few evaluations could have sufficed. However, when the

search space grows, the ML-based approach fits better within

the study work, offering a coherent and efficient approach to

tackle the search. Figure 4(d) shows the required number of

candidate evaluations to train the model. When three kernels

must be tuned, the exhaustive search have to explore hundreds

of valid combinations, while the ML-based methodology finds

a good optimum with few evaluations.

VI. EXPERIMENTAL RESULTS

This section presents the performance results for the cases of

study exposed above. While a direct comparison between the

proposed analytical methodology for GPU-embedded systems

and the existing methodology for desktop and server GPUs

proposed in [33] may be of interest, we specifically emphasize

the comparison between human-developed analytical model-

driven methodologies with machine-learning methodologies,

as our main goal is to assess effectiveness of two different

kind of predictive tuning strategies in GPU-embedded systems

rather than benchmarking two specific analytical models. We

assess the resulted tuned library alongside other state-of-the-art

libraries to demonstrate the effectiveness of the tuning process

and to provide a performance study for these computational

patterns.

When comparing the performance of the BPLG imple-

mentations to other libraries, the BPLG configurations were

tuned to maximize performance, regardless of the method-

ology employed. Whether using the analytical model-driven

approach or the ML-based search, the BPLG implementations

were lately fine-tuned with the best configuration found for

each problem size. In all cases, test data are already on the

GPU; thus, there are no data transfers during the benchmarks

to prevent interactions with other factors in the study. The

experiments are run in single precision. Batch execution is

used to process 226/N simultaneous problems, therefore as the

input size increases, the number of batch executions decreases.

The NVIDIA’s Jetson TX1 is used as test platform in this

work, which was described in Section II. Specifically, this

development board was flashed with the JetPack 3.3.4 L4T
28.5, which installed CUDA 9.0 SDK for the purpose of

ensuring compatibility with BPLG. In addition to this, due to

issues encountered during the installation of GPTune Python

dependencies in the device, we opted to run the GPTune

Python framework on the host machine and pass the execution

candidates to the device. However, it is worth noting that

this incompatibility with Python packages has been fixed in

Solver Analytical-based
Performance

ML-based
Performance

Analytical Φ ML Φ

BPLG-WM 670 MRows/s 677 MRows/s 0.9895 1
BPLG-CR 640 MRows/s 635 MRows/s 0.9941 0.9855

BPLG-PCR 547 MRows/s 545 MRows/s 0.9985 0.9941
BPLG-LF 668 MRows/s 669 MRows/s 0.9951 0.9968

BPLG-ScanLF 18.27 MData/s 18.72 MData/s 0.9699 1
BPLG-ScanKS 17.9 MData/s 17.63 MData/s 1 0.9819

BPLG-FFT 39 GFlops/s 39.09 GFlops 0.9718 0.9813

BPLG-Large-FFT 57.28 GFlops/s 63.37 GFlops 0.8739 0.9761

TABLE II: Average performance and Φ metric values over

the executed (batched) problem sizes for each parallel-prefix

algorithm and methodology.

newer JetPack and Jetson versions, and the complete Bayesian

optimization workflow can be now executed directly on the

device.

Furthermore, the two proposed methodologies cannot guar-

antee that the suggested optimal configuration is actually the

best configuration from the search space. It requires a metric

that quantifies the achieved performance with respect to the

best possible. Based on the quantitative metric presented in

[54], we proposed using the following metric to capture the

performance of a parallel-prefix algorithm a solving a problem

size p across all possible problem sizes C, given by the

harmonic mean:

Φ(a, C) =
|C|

∑
i∈C 1/ei(a, pi)

where ei(a, pi) is the performance efficiency of algorithm a
solving problem size pi, measured as a fraction of the best

empirical-observed performance. Thus, an exhaustive search

of the parameter space is also executed for each algorithm

and problem size to compare the performance efficiency of the

suggested configurations. This metric gives the same weight to

all problem sizes of the input space. A value of Φ = 1 indicates

a best match, and lower values measure how much the

observations deviate from the best. The BPLG implementation

is the responsible in achieving superior performance compared

to alternative libraries; however, effective tuning is crucial for

BPLG to surpass them. Notably, BPLG exhibits significant

performance variations depending on the chosen values for

the investigated performance parameters. By analyzing this Φ
metric and comparing performance against other state-of-the-

art libraries, we gain valuable insights into the efficacy of our

proposed methodologies.

A. Tridiagonal Systems Solvers Performance Results

In the context of tridiagonal systems, the data performance

is quantified in MRows/s, utilizing the formula: N · b ·10−6/t,
where N stands for number of equations, b for number of

batches and t is the runtime. Table II presents the achieved

performance for the CR, PCR, LF, and WM implementations

in the BPLG library using the two proposed methodologies.

Furthermore, the Φ metric is computed with the optimal

configuration obtained through an exhaustive search. The

results demonstrate that both methodologies yield comparable

performance, closely approaching the optimal configuration

Fig. 5: Performance analysis for the tridiagonal solvers

identified by the exhaustive search. The analytical model

exhibits excellent performance, while the ML-based search

also proves highly effective, as few combinations are valid

with high problem sizes requiring minimal exploration to

identify the global optimal solution. It is worth noting that

slight variations in execution times among GPU runs account

for most of the observed differences. To mitigate variability,

we conducted 100 executions for each configuration, thereby

reducing the impact of such fluctuations.

Figure 5 illustrates the performance of the BPLG proposals

in comparison to the CUSPARSE library. Notably, the jagged

outline observed for BPLG-WM stems from the CUDA imple-

mentation. When the number of elements in a thread workload

(radix r) does not evenly divide the total number of elements

(N), a mixed-radix technique is employed. This technique

involves performing the computation in multiple steps, with

a lower r value for the first step and the given r value for the

remaining steps. Consequently, additional synchronizations are

required, and the limited shared memory availability restricts

the number of simultaneous threadblocks per SM. On the

other hand, CUSPARSE exhibits subpar performance, which

is not exclusive to the Jetson platform. Since CUDA 7.0, the

performance of the CUSPARSE library for solving tridiagonal

systems has experienced notable degradation.

B. Scan Primitive Performance Results

The performance evaluation of the Scan primitive is con-

ducted in terms of MData/s, using the formula N · b · 10−6/t.
Table II demonstrates that both methodologies suggest config-

urations that align with the global optimum. Figure 6 provides

an analysis of the performance of tuning BPLG implementa-

tions in comparison to the CUB library. Notably, the BPLG

implementations exhibit similar performance characteristics,

maintaining a constant amount of shared memory regardless of

the problem size N . This is accomplished through the utiliza-

tion of shuffle instructions for interthread communications, en-

suring consistent performance across different problem sizes.

The default implementation of the CUB library does not

inherently support multi-batch execution. However, it can be

adapted by applying a segmented-scan transformation tech-

Fig. 6: Performance analysis for the scan operation

nique [55]. Nonetheless, invoking the library multiple times

yielded the best performance in our experiments. Therefore,

in the interest of fairness, the experimental results were

obtained by invoking the CUB library b times, resulting in an

average performance of 14.97 MData/s. When compared to the

BPLG implementations, BPLG outperforms CUB for problem

sizes smaller than N = 2048. This behavior aligns with

expectations, as the number of library invocations corresponds

to the number of executed batches. With a greater number

of smaller problem sizes, there are more library invocations,

incurring additional overhead. Conversely, for larger problem

sizes, the number of batches decreases, leading to improved

performance. Despite the peak of performance for large prob-

lem sizes, BPLG implementations obtain an average speed-up

of 1.22x over the CUB library.

C. Fast Fourier Transform (FFT) Performance Results

The performance evaluation of the complex FFT is quan-

tified in GFlops/s using the well-established [53] formula:

5N · log2(N) · b · 10−9/t, where N represents the input

size, b denotes the number of processed batches, and t is

the time measured in seconds. The obtained performance

results for each tuning methodology are summarized in Table

II, showcasing competitive configurations suggested by both

methodologies. Figure 7 provides a comprehensive comparison

between the BPLG implementation and the cuFFT library in

terms of performance. It is evident that the tuning BPLG

version achieves highly comparable performance to cuFFT for

problem sizes up to N = 2048. However, for larger problem

sizes, the shared memory limitation becomes the primary

bottleneck for the BPLG version. Notably, while this Maxwell

architecture offers an increased shared memory capacity of

64 KB per SM, each threadblock can only utilize up to 48

KB. Consequently, a performance drop is observed beyond

N > 2048. It is important to note that despite this decline, the

cuFFT library maintains comparable performance on average

with the BPLG-FFT implementation.

D. Larger Problem-Size Performance Results: FFT

In the context of small to medium problem sizes, the

analytical model has consistently demonstrated comparable or

Fig. 7: Performance analysis for the complex FFT operation

Fig. 8: Performance analysis for large FFTs

superior performance compared to the ML-based search. This

finding emphasizes the pragmatic advantage of utilizing the

analytical model, as it eliminates the need for costly evalua-

tions of numerous candidates to train a surrogate model. The

ML-based search may not have appeared as a favorable option

due to the relatively small search spaces, making exhaustive

search or analytical modeling more practical. However, as

depicted in Table II, a notable shift in behavior emerges for

larger problem sizes. This discrepancy can be attributed to the

increased complexity of the optimization problem, where up

to three kernels require tuning, leading to a considerably larger

search space. Consequently, the ML-based search becomes

a more viable and beneficial approach. Figure 8 shows the

performance of the tuned BPLG implementation compared

to cuFFT, where comparable performance is achieved. The

highest difference in performance happens at N = 8192, for

which cuFFT launches only one kernel while BPLG launches

two. This evidences the overhead associated to increase the

number of kernels in a computation. The growing trend in

performance along sizes observed for small and medium

problem sizes is reserved for large problem sizes, as shared

memory becomes a limiting factor due to its reduced capacity

and more frequent high-latency global-memory accesses.

VII. CONCLUSIONS

In this study, we addressed the challenge of performance

tuning in GPU-embedded systems, with a particular focus on

the NVIDIA Jetson TX1 platform, which serves as a proof of

concept for optimizations that can be extrapolated to more

recent architectures, leading to performance portability. In

addition to this, our investigation aimed to fill the existing

gap in performance studies for parallel computation patterns

in GPU-embedded systems.

We developed and compared two tuning methodologies:

an analytical model-driven approach and a Machine Learning

(ML)-based approach. We examined three essential parallel

computing components: the scan primitive, tridiagonal system

solvers, and complex Fast Fourier Transform (FFT), which

represent performance-critical operations in numerous com-

puting applications. Our results demonstrated that both tun-

ing methodologies yielded highly competitive configurations,

showcasing the effectiveness of each approach in specific

scenarios. For regular computation patterns that require only

one kernel invocation, the analytical model excelled and makes

this heuristic the best choice for offline and online tuning due

to the absence of candidate evaluations. On the other hand,

the ML-based search, with its ability to treat the relationship

between performance and tuning parameters as a black-box

model, demonstrated excellent performance in all cases, but

especially when the parameter space is large, for example due

to the launch of several performance-interdependent kernels.

The ML-based approach works better for online tuning when

the performance gains through several application invocations

can amortize the cost of few candidate evaluations. Addition-

ally, addressing new features, as offered by newer devices,

would imply modifying the analytical model carefully, as

it escalates their complexity, while ML-based methodologies

offer a solution with greater easy by only changing the set of

Performance Parameters to be tuned.

The performance evaluation of the scan primitive, tridi-

agonal system solvers, and complex FFT further solidified

the effectiveness of our proposed methodologies. The BPLG

library, tuned using both the analytical model-driven and ML-

based approaches, exhibited performance that closely matched

the optimal configuration obtained through exhaustive search.

The BPLG implementations showcased comparable or even

superior performance compared to state-of-the-art libraries

such as CUSPARSE, CUB, and cuFFT for various problem

sizes. Moving forward, further exploration with our method-

ologies on other irregular computation patterns, such as sparse

or work-imbalanced patterns, will tackle the performance

portability challenge for a broader catalogue of scientific

workloads.

ACKNOWLEDGMENTS

This material is based upon work supported by the Ad-

vanced Scientific Computing Research Program in the U.S.

Department of Energy, Office of Science, under Award

Number DE-AC02-05CH11231. Also supported by Spanish

Grants PID2019-104184RB-I00 and PID2022-136435NB-I00,

funded by MCIN/AEI/ 10.13039/501100011033, PID2022

also funded by ”ERDF A way of making Europe”, EU; and,

by the Galician Government under the Consolidation Program

of Competitive Research Units (Ref. ED431C 2021/30).

REFERENCES

[1] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith,
A. Berg, and S. Wang, “An Evaluation of the NVIDIA TX1 for
Supporting Real-Time Computer-Vision Workloads,” in Proceedings of
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2017, pp. 353–364.

[2] R. E. Ladner and M. J. Fischer, “Parallel Prefix Computation,” J. ACM,
vol. 27, no. 4, pp. 831–838, 1980.

[3] A. P. Dieguez, J. Lobeiras, M. Amor, and R. Doallo, “BPLG: The But-
terfly Processing Library for GPUs,” http://bplg.des.udc.es/BPLib.zip,
2018.

[4] M. Su, J. Tan, C. Lin, J. Ye, C. Wang, and C. Hung, “Constructing
a Mobility and Acceleration Computing Platform with NVIDIA Jetson
TK1,” in Proceedings of IEEE 12th International Conference on Em-
bedded Software and Systems, 2015, pp. 1854–1858.

[5] F. J. A. Rueda, “Optimización de aplicaciones de procesado de señales
digitales empleando como plataforma hardware NVIDIA Jetson TK1,”
Master’s thesis, Universidad Politécnica de Valencia, 2015.

[6] Y. Ukidave, D. Kaeli, U. Gupta, and K. Keville., “Performance of
the NVIDIA Jetson TK1 in HPC,” in Proceedings of 2015 IEEE
International Conference on Cluster Computing, 2015, pp. 533–534.

[7] H. Halawa, H. Abdelhafez, A. Boktor, and M. Ripeanu, “NVIDIA Jetson
Platform Characterization,” in Proceedings of International European
Conference on Parallel and Distributed Computing (EuroPar’17), vol.
10417, 2017, pp. 92–105.

[8] M. Eisenbach, R. Stricker, D. Seichter, A. Vorndran, T. Wengefeld, and
H. Gross, “Speeding up Deep Neural Networks on the Jetson TX1,”
in Proceedings of Int. WS CAPRI at Join conf. on Neural Networks
(IJCNN), 2017, pp. 11–22.

[9] S. K. Prashanthi, S. A. Kesanapalli, and Y. Simmhan, “Characterizing
the Performance of Accelerated Jetson Edge Devices for Training Deep
Learning Models,” Proc. ACM Meas. Anal. Comput. Syst., vol. 6, no. 3,
dec 2022.

[10] J. Zhu, H. Feng, S. Zhong, and T. Yuan, “Performance analysis of
real-time object detection on Jetson device,” in 2022 IEEE/ACIS 22nd
International Conference on Computer and Information Science (ICIS),
2022, pp. 156–161.

[11] H. A. Abdelhafez, H. Halawa, K. Pattabiraman, and M. Ripeanu,
“Snowflakes at the Edge: A Study of Variability among NVIDIA Jetson
AGX Xavier Boards,” in Proceedings of the 4th International Workshop
on Edge Systems, Analytics and Networking, ser. EdgeSys ’21. New
York, NY, USA: ACM, 2021, p. 1–6.

[12] V. Volkov and B. Kazian, “Fitting FFT onto the G80 architecture,”
Technical Report University of California, Berkeley, 2011.

[13] Y. Dotsenko, S.S. Baghsorkhi, B. Lloyd and N.K. Govindaraju, “Auto-
Tuning of Fast Fourier Transform on Graphics Processors,” in Proc. of
Principles and Practice of Parallel Programming (PPoPP’11), 2011, pp.
257–266.

[14] A. Nukada and S. Matsuoka, “Auto-tuning 3-D FFT Library for CUDA
GPUs,” in Proc. of the Conf. on High Perf. Computing Networking,
Storage and Analysis (SC’09), 2009, pp. 1–10.

[15] A. Nukada, K. Sato, and S. Matsuoka, “Scalable Multi-GPU 3-D
FFT for TSUBAME 2.0 Supercomputer,” in Proc. of the International
Conference on High Performance Computing, Networking, Storage and
Analysis (SC’12), 2012, pp. 44:1–44:10.

[16] J. Park, G. Bikshandi, K. Vaidyanathan, P. T. P. Tang, P. Dubey, and
D. Kim, “Tera-scale 1D FFT with Low-communication Algorithm and
Intel&Reg Xeon Phi&Trade Coprocessors,” in Proc. of the International
Conference on High Performance Computing, Networking, Storage and
Analysis (SC’13), 2013, pp. 34:1–34:12.

[17] D. Takahashi, “Implementation of Parallel 1-D FFT on GPU Clusters,”
in Proc. of the IEEE 16th International Conference on Computational
Science and Engineering (ICCS’13), 2013, pp. 174–180.

[18] B. Li, S. Cheng, and J. Lin, “tcFFT: A Fast Half-Precision FFT Library
for NVIDIA Tensor Cores,” in 2021 IEEE International Conference on
Cluster Computing (CLUSTER), 2021, pp. 1–11.

[19] A. Davidson and J. D. Owens, “Register Packing for Cyclic Reduction,”
in Proceed. of the 4th Workshop on General Purpose Processing on
Graphics Processing Units GPGPU-4, 2011, pp. 4:1–4:6.

[20] H. Kim, S. Wu, L. Chang, and W. W. Hwu, “A Scalable Tridiagonal
Solver for GPUs,” in Proceedings of the International Conference on
Parallel Processing (ICPP’11), 2011, pp. 444–453.

[21] L.-W. Chang, J. A. Stratton, H.-S. Kim, and W.-M. W. Hwu, “A Scalable,
Numerically Stable, High-performance Tridiagonal Solver Using GPUs,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC’12), 2012, pp. 27:1–
27:11.

[22] Y. Zhang, J. Cohen, and J. D. Owens, “Fast Tridiagonal Solvers on
the GPU,” in Proceed. of the 15th ACM Symposium on Principles and
Practice of Parallel Programming (PPoPP’10), 2010, pp. 127–136.

[23] A. Davidson, Y. Zhang and J.D. Owens, “An Auto-tuned Method
for Solving Large Tridiagonal Systems on the GPU,” in Proc. of the
25th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’11), 2011, pp. 956–965.

[24] E. László, M. Giles, and J. Appleyard, “Manycore Algorithms for
Batch Scalar and Block Tridiagonal Solvers,” ACM Trans. Math. Softw.,
vol. 42, no. 4, pp. 31:1–31:36, 2016.

[25] W. Yang, K. Li, and K. Li, “A Parallel Solving Method for Block-
tridiagonal Equations on CPU—GPU Heterogeneous Computing Sys-
tems,” J. Supercomput., vol. 73, no. 5, pp. 1760–1781, 2017.

[26] K. Liu and W. Xue, “A Novel Compute-Efficient Tridiagonal Solver
for Many-Core Architectures,” IEEE Transactions on Parallel and
Distributed Systems, vol. 34, no. 1, pp. 195–206, 2023.

[27] A. P. Diéguez, M. Amor, and R. Doallo, “New Tridiagonal Systems
Solvers on GPU Architectures,” in Proc. of the 22nd International
Conference on High Performance Computing (HiPC’15), 2015, pp. 85–
94.

[28] Y. Dotsenko, N. K. Govindaraju, P.-P. Sloan, C. Boyd, and J. Manfer-
delli, “Fast Scan Algorithms on Graphics Processors,” in Proceedings
of the 22Nd Annual International Conference on Supercomputing, 2008,
pp. 205–213.

[29] S. Yan, G. Long, and Y. Zhang, “StreamScan: Fast Scan Algorithms for
GPUs Without Global Barrier Synchronization,” SIGPLAN Not., vol. 48,
no. 8, pp. 229–238, Feb. 2013.

[30] CUDA CUFFT Library, Nvidia Corporation, 2012,
https://developer.nvidia.com/cufft.

[31] NVIDIA-Corporation, “CUDA CUSPARSE Library,”
https://developer.nvidia.com/cusparse, 2012, last access Nov 2018.

[32] CUB Library, http://nvlabs.github.io/cub/, NVIDIA-Corporation, 2015.
[33] A. P. Diéguez, M. Amor, and R. Doallo, “Parallel Prefix Operations on

GPU: Tridiagonal System Solvers and Scan Operators,” The Journal of
Supercomputing, vol. 75, no. 3, p. 1510–1523, mar 2019.

[34] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan, J. Bosboom, U.-M.
O’Reilly, and S. Amarasinghe, “OpenTuner: An Extensible Framework
for Program Autotuning,” Parallel Architectures and Compilation Tech-
niques, PACT, pp. 303–315, 08 2014.

[35] B. Van Werkhoven, “Kernel Tuner: A search-optimizing GPU code auto-
tuner,” Future Generation Computer Systems, vol. 90, pp. 347–358,
2019.

[36] P. Balaprakash, S. Wild, and P. Hovland, “Can search algorithms save
large-scale automatic performance tuning?” Procedia CS, vol. 4, pp.
2136–2145, 12 2011.

[37] W. Jia, K. A. Shaw, and M. Martonosi, “Starchart: Hardware and soft-
ware optimization using recursive partitioning regression trees,” in 22nd
International Conference on Parallel Architectures and Compilation
Techniques, 2013, pp. 257–267.

[38] Y. Zhang, M. Sinclair, and A. A. Chien, “Improving performance
portability in opencl programs,” in Supercomputing, 2013, pp. 136–150.

[39] T. L. Falch and A. C. Elster, “Machine Learning Based Auto-Tuning for
Enhanced OpenCL Performance Portability,” in 2015 IEEE International
Parallel and Distributed Processing Symposium Workshop (IPDPS),
2015, pp. 1231–1240.

[40] J. Bergstra, N. Pinto, and D. Cox, “Machine Learning for Predictive
Auto-Tuning with Boosted Regression Trees,” Innovative Parallel Com-
puting, InPar 2012, 05 2012.

[41] J. Zhang, J. Sun, W. Zhou, and G. Sun, “An Active Learning Method for
Empirical Modeling in Performance Tuning,” in IEEE Internat. Parallel
and Distributed Processing Symposium (IPDPS), 2020, pp. 244–253.

[42] X. Wu, M. Kruse, P. Balaprakash, H. Finkel, P. Hovland, V. Taylor, and
M. Hall, “Autotuning PolyBench Benchmarks with LLVM Clang/Polly
Loop Optimization Pragmas Using Bayesian Optimization,” in 2020
IEEE/ACM Performance Modeling, Benchmarking and Simulation of
HPC Systems (PMBS), 2020, pp. 61–70.

[43] Y. Liu, W. M. Sid-Lakhdar, O. Marques, X. Zhu, C. Meng, J. W.
Demmel, and X. S. Li, “GPTune: Multitask Learning for Autotuning
Exascale Applications,” in Proceedings of the 26th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’21, 2021, p. 234–246.

[44] M. Dorier, R. Egele, P. Balaprakash, J. Koo, S. Madireddy, S. Ramesh,
A. D. Malony, and R. Ross, “HPC Storage Service Autotuning Using
Variational- Autoencoder -Guided Asynchronous Bayesian Optimiza-
tion,” in 2022 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, sep 2022.

[45] The Tegra X1 Whitepaper, Nvidia Corporation, 2015,
https://international.download.nvidia.com/pdf/tegra/Tegra-X1-
whitepaper-v1.0.pdf.

[46] R. W. Hockney, “A Fast Direct Solution of Poisson’s Equation Using
Fourier Analysis,” J. ACM, vol. 12, no. 1, pp. 95–113, 1965.

[47] R. Hockney and C. Jesshope, Parallel Computers 2: Architecture,
Programming and Algorithms. Taylor & Francis, 1988.

[48] X. Wang and Z.G. Mou, “A divide-and-conquer method of solving
tridiagonal systems on hypercube massively parallel computers,” in Proc.
of the Third IEEE Symposium on Parallel and Distributed Processing
(IPDPS’91), 1991, pp. 810–817.

[49] J. Lobeiras, M. Amor, and R. Doallo, “BPLG: A Tuned Butterfly
Processing Library for GPU Architectures,” Int. J. Parallel Program.,
vol. 43, no. 6, pp. 1078–1102, 2015.

[50] F.-J. Willemsen, R. van Nieuwpoort, and B. Van Werkhoven, “Bayesian
Optimization for auto-tuning GPU kernels,” in 2021 International Work-
shop on Performance Modeling, Benchmarking and Simulation of HPC
Systems (PMBS), 2021.

[51] R. Howarth, “Mining Geostatistics,” Mineralogical Magazine, vol. 43,
pp. 563–564, 12 1979.

[52] J. Močkus, “On bayesian methods for seeking the extremum,” in
Optimization Techniques IFIP Technical Conference Novosibirsk, 1975,
pp. 400–404.

[53] A. P. Diéguez, M. Amor, J. Lobeiras, and R. Doallo, “Solving Large
Problem Sizes of Index-Digit Algorithms on GPU: FFT and Tridiagonal
System Solvers,” IEEE Transactions on Computers, vol. 67, no. 1, pp.
86–101, 2018.

[54] J. Pennycook, J. Sewall, and V. Lee, “A Metric for Performance
Portability,” eprint arXiv:1611.07409, p. 7, 11 2016.

[55] S. Sengupta, A. E. Lefohn, and J. D. Owens, “A work-efficient step-
efficient prefix sum algorithm,” Workshop on Edge Computing Using
New Commodity Architectures, pp. 26–27, 2006.

