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Abstract—The heterogeneous computing paradigm has led to
the need for portable and efficient programming solutions that
can leverage the capabilities of various hardware devices, such as
NVIDIA, Intel, and AMD GPUs. This study evaluates the porta-
bility and performance of the SYCL and CUDA languages for
one fundamental bioinformatics application (Smith-Waterman
protein database search) across different GPU architectures,
considering single and multi-GPU configurations from different
vendors. The experimental work showed that, while both CUDA
and SYCL versions achieve similar performance on NVIDIA
devices, the latter demonstrated remarkable code portability to
other GPU architectures, such as AMD and Intel. Furthermore,
the architectural efficiency rates achieved on these devices were
superior in 3 of the 4 cases tested. This brief study highlights
the potential of SYCL as a viable solution for achieving both
performance and portability in the heterogeneous computing
ecosystem.

Index Terms—oneAPI, SYCL, GPU, CUDA, Performance
portability

I. INTRODUCTION

In the last decade, the quest to improve the energy efficiency

of computing systems has fueled the trend toward hetero-

geneous computing and massively parallel architectures [1].

Nowadays, GPUs can be considered the dominant accelerator,

and Nvidia, Intel, and AMD are the most prominent manu-

facturers. In the 4th quarter of 2022, Intel and AMD had 9%

of the market, with Nvidia dominating the discrete graphics

card market at 82%. Moreover, considering also the integrated

and embedded graphics, Intel had 71% quote, Nvidia 17%, and

AMD 12% 1. This poses a significant challenge for researchers

who use GPUs for their experiments and simulations. The

critical question is how to use this growing computational

1https://www.pcgamer.com/intel-is-already-matching-amd-for-gaming-gra
phics-market-share/

capacity transparently without having to pay attention to

the programming models, hardware support, or mandatory

software ecosystem.

Focusing on the programming aspect, CUDA is still the

most popular programming language for GPUs, although it

is a proprietary language only valid for NVIDIA devices.

Fortunately, other open initiatives have contemplated the pro-

gramming of GPUs or even other accelerators generically.

In particular, SYCL is one of the most promising recent

initiatives, which is an open standard from the Khronos Group.

One noteworthy feature of SYCL is its status as a cross-

platform abstraction layer, enabling programmers to adhere

to the fundamental principle of ”write code once and run it

anywhere”. In this sense, the same SYCL code can run not

only on multiple vendor GPUs but also on different hardware

platforms, including CPUs and FPGAs. SYCL capitalizes

on programming productivity by reducing the effort required

during development tasks and minimizing maintenance costs.

The concept of performance portability becomes fundamental

in this context. Specifically, performance portability encom-

passes two key aspects: (1) enabling the execution of a single

application on various hardware platforms, and (2) achieving a

desired level of performance across these diverse platforms [2].

This paper aims to address the previous issue by ex-

ploring the SYCL programming paradigm in the field of

Bioinformatics and Computational Biology. These research

areas have been leveraging GPUs for over two decades [3]

and numerous of their implementations are based on CUDA,

imposing significant limitations on portability across a wide

range of heterogeneous architectures. For that reason, this

study evaluates the portability and performance of the SYCL

and CUDA languages for one fundamental bioinformatics

application (Smith-Waterman biological sequence alignment)



across different GPU architectures, considering single and

multi-GPU configurations from multiple vendors. Hence, we

select the SW# suite [4], [5]: a CUDA-based, memory-efficient

implementation for biological sequence alignment, that has

been recently migrated to SYCL [6]. Our main contributions

can be summarized as:

• An adaptation and extension of the performance model

from [7]. This performance model is adapted to the

features of the SW# suite and also extended to include

AMD and Intel GPUs (both discrete and integrated types).

• A functional and performance portability study for SW#
applications across different GPU architectures, consid-

ering single and multi-GPU configurations from multiple

vendors. To the best of our knowledge, no previous study

has considered such a diverse and large set of GPUs.

The rest of the paper is organized as follows. Section II in-

troduces the background for this research. Section III describes

the case-study applications and also the adapted and extended

performance model. Section IV presents the functional and

performance portability results. Finally, Section V discusses

some related works, and Section VI presents the conclusions

and possible lines for future work.

II. BACKGROUND

A. GPUs and Programming Models

In 2007, Nvidia introduced CUDA [8] alongside the Tesla

GPU, to enable general-purpose programming on GPUs.

CUDA is a programming model and parallel computing plat-

form specifically designed for general computing on GPUs.

While CUDA has become the most popular low-level program-

ming model for general-purpose GPU computing, its main

limitation is that it only supports NVIDIA devices. In the

opposite sense, OpenCL [9] gained prominence because it can

be used in several devices and vendors requiring a similar

abstraction level as CUDA.

High-Level Programming initiatives such as OpenMP [10],

OpenACC [11], [12], and SYCL [13] have played significant

roles in the field of parallel computing in GPU scenarios.

OpenMP initially focused on multi-core CPU computing but

later expanded its support to include accelerators like GPUs

with the release of v4.0. While OpenACC [14] (Open Accel-

erators) emerged as one of the earliest high-level approaches

for GPU programming through the use of directive-based

programming, OpenMP has even started overshadowing it by

incorporating most of their features.

Currently, one of the most promising initiatives in the GPU

programming ecosystem is SYCL [13]. It enables developers

to write code for heterogeneous processors using standard ISO

C++. It incorporates host and kernel code in a single source

file and utilizes templates and lambda functions for generic

programming. Moreover, SYCL supports various acceleration

APIs, such as OpenCL, enabling seamless integration with

lower-level code.

Multiple SYCL implementations are available nowadays:

Codeplay’s ComputeCpp [15], oneAPI by Intel [16],

triSYCL [17] led by Xilinx, and OpenSYCL [18] (previ-

ously denoted as hipSYCL) led by Heidelberg University. In

particular, Intel oneAPI can be considered the most mature

developer suite. Among the main features of oneAPI, we

can find that is an open, cross-industry project that aims to

provide an efficient, high-performance programming model.

It eliminates the concept of separate code bases for host and

device such as in OpenCL. Moreover, multiple programming

languages and different tools for each architecture are sup-

ported. Data Parallel C++ (DPC++) is oneAPI’s core language

for programming accelerators and multiprocessors [16], which

integrates SYCL and OpenCL standards without additional

extensions. Additionally, oneAPI facilitates interoperability

with optimized libraries such as oneCCL, oneDAL, oneDNN,

oneMKL, oneTBB, and oneVPL, catering to diverse parallel

application domains.

B. Smith-Waterman Algorithm

The SW algorithm is widely used to obtain the optimal

local alignment between two sequences [19]. This method

is based on a dynamic programming approach and is highly

sensitive since it explores all possible alignments between the

sequences.

Given two sequences Q and D of length |Q| = m and

|D| = n, the recurrence relations for the SW algorithm with

the modification of Gotoh [20] are defined as follows:

Hi,j = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0

Hi−1,j−1 + SM(Q[i], D[j])

Ei,j

Fi,j

(1)

Ei,j = max

{
Hi,j−1 −Go

Ei,j−1 −Ge

(2)

Fi,j = max

{
Hi−1,j −Go

Fi−1,j −Ge

(3)

The similarity score Hi,j is computed to identify a common

subsequence; Hi,j contains the score for aligning the prefixes

Q[1..i] and D[1..j]. Moreover, Ei,j and Fi,j correspond to

the scores of prefix Q[1..i] and D[1..j] aligned to a gap,

respectively. SM denotes the scoring matrix and defines the

match/mismatch scores between residues. Last, Go and Ge

refer to the gap open and gap extension penalties, respectively.

First of all, H , E and F must be initialized with 0 when i =
0 or j = 0. Then, the recurrences should be calculated with

1 ≤ i ≤ m and 1 ≤ j ≤ n. The highest value in the H matrix

(S) corresponds to the optimal local alignment score between

Q[1..i] and D[1..j]. If required, the optimal local alignment

is finally obtained by following a traceback procedure whose

starting point is S. From a computational point of view, it is

important to highlight the computational dependencies of any

H element. Any cell can be calculated only after the values of

the upper, left, and upper-left neighbors are known; imposing

restrictions on how H can be processed.



Fig. 1. Parallelization approaches in similarity matrix computations (adapted
from [22]). Each color indicates the cells that can be computed together in a
SIMD manner.

SW in practice and parallelization issues. The SW algo-

rithm can be used to compute: (a) pairwise alignments (one-

to-one); usually associated with long DNA sequences; or (b)

database similarity searches (one-to-many), usually associated

with protein sequence alignment. Although the processing

nature of the SW algorithm with the data dependencies on the

computation Hi,j is very challenging from the point of view

of parallelism exploitation, both approaches have been studied

in the literature exploiting the SIMD capabilities. In the (a)

case, a single matrix is calculated and all Processing Elements

(PEs) work collaboratively (intra-task parallelism). Due to

inherent data dependencies, neighboring PEs communicate to

exchange border elements. In the (b) approach, while the intra-

task scheme can be used, a better parallel scheme consists in

simultaneously calculating multiple matrices without commu-

nication between the PEs (inter-task parallelism) [21] could

be performed. Fig. 1 illustrates both approaches.

The SW algorithm runs in quadratic time and space to

compute optimal alignment. However, computing optimal

alignment scores do not require storing the full similarity

matrix and can be calculated in linear space complexity.

Similarity database search takes advantage of this feature

since optimal alignment only makes sense for very similar

sequences. Therefore, all alignment scores are calculated first

and optimal alignments are computed only for top-ranked

database sequences.

C. Performance portability

According to Penycook et al. [23], performance portability
refers to ”A measurement of an application’s performance
efficiency for a given problem that can be executed correctly on
all platforms in a given set”. These authors define two differ-

ent performance efficiency metrics: architectural efficiency and

application efficiency. The former denotes the capacity of an

application to effectively utilize hardware resources, measured

as a proportion of the theoretical peak performance. The latter

signifies the application’s ability to select the most suitable

implementation for each platform, representing a fraction of

the highest observed performance achieved.

The metric for performance portability presented by Peny-

cook et al. [23] was later reformulated by Marowka [2] to

address some of its flaws. Formally, for a given set of platforms

H from the same architecture class, the performance portability

Φ̄ of a case-study application α solving problem p is:

Φ̄(α, p,H) =

{∑
i∈H ei(α,p)

|H| if i is supported ∀i ∈ H

not applicable (NA) otherwise

where ei(α, p) corresponds to the performance efficiency of

case-study application α solving problem p on the platform i.
The performance portability concept emphasizes the capa-

bility to write code that can efficiently utilize the available

computing resources, such as CPUs, GPUs, or specialized

accelerators while maintaining high performance regardless

of the specific hardware configuration. With performance

portability, developers can write code once and have it de-

liver optimal performance on various target platforms. This

eliminates the need for extensive manual code optimizations

or platform-specific modifications, reducing development time

and effort.

III. CASE-STUDY APPLICATIONS AND PERFORMANCE

MODEL

A. Case-Study Applications

Two GPU-accelerated implementations of p =protein

database search were considered for the performance porta-

bility evaluation:

• CUDA: this version corresponds to the SW# suite, a

CUDA-based, memory-efficient implementation for bi-

ological sequence alignment, which can be used either

as a stand-alone application or a library. It can com-

pute pairwise alignments as well as database similarity

searches, for both protein and DNA sequences; and it

allows configuring the alignment method (including SW),

the open/extension penalties, and the scoring matrix.

SW# combines CPU and GPU computation for optimal

efficiency. It dynamically balances the workload between

the CPU and GPU based on sequence lengths, aiming

to minimize idle threads. From a parallelization point

of view, SW# uses both inter-task and intra-task paral-

lelism but primarily on the GPU side. The GPU divides

the workload into two partitions: a “short kernel” pro-

cess shortest database sequences using inter-task scheme,

while a “long kernel” aligns longest sequences by intra-

task strategy. When utilizing multiple GPUs, SW# follows

a flexible approach: if the number of query sequences to

be aligned is fewer than the number of available GPU

devices, all devices align the same query sequence with

a different database partition in synchronized manner.

Conversely, if the number of query sequences is greater

than the number of GPUs, each GPU align a different

one against the complete database [4], [5].



• SYCL: this code is based on the implementation presented

in the paper [6], representing a SYCL equivalent. The

migration of the SW# suite was performed using dpct
(the Data Parallel Compatibility Tool available in the

oneAPI suite) and some hand-coding modifications.

B. Performance Model

Peak theoretical hardware performance must be estimated

for all selected GPUs in this study to compute the performance

portability metric. This step requires considering both hard-

ware and algorithm features. Fortunately, the previous work

from Lan et al. [7] can be used as a basis for this task; in this

paper, the computing capability of different devices (including

accelerators based on NVIDIA GPUs, Intel CPUs, and the

discontinued Intel Xeon Phis) can be estimated using Eq. 4:

Capability = Clock Rate× Throughput× Lanes (4)

where Clock rate refers to the clock frequency, Throughput
refers to the instruction count that the device can execute in

one clock cycle, and Lanes refers to the number of SIMD

vector lanes. Then, the number of instructions issued in each

cell update of the similarity matrix should be counted. In the

sequence alignment context, the most popular metric for mea-

suring performance is related to the number of Cell Updated

Per Second (CUPS). So the theoretical peak performance of

any device could be modeled using Eq. 5:

Theo peak =
Capability

Instruction count one cell update
(5)

Even though this study only considers GPUs, these equa-

tions can serve as a basis to estimate their theoretical peak

performance for other devices such as CPUs or FPGAs. For

this work, the previous performance model from [7] is adapted

to the features of the SW# algorithm and also extended to other

GPUs vendors such as AMD and Intel GPUs (both discrete

and integrated types). Table I summarized the theoretical peak

performance of selected GPUs using the Eq. 5. More details

can be found in the rest of this section.

1) SW# core instructions: SW# computes the similarity

matrix using 32-bit integers and performs 12 instructions per

cell update. Algorithm 1 presents the snippet of cell update in

similarity matrix as in Eq. 1, Eq. 2, and Eq. 3. Just adding,

subtracting, and maximum instructions are required to perform

a single-cell update.

2) Architectural features on NVIDIA’s GPU: The # Cores

in an NVIDIA GPU refers to the number of Streaming Multi-

processors. CUDA does not strictly follow a SIMD execution

model but it adopts a similar one denoted as the SIMT model.

A warp is composed of a group of 32 threads that execute

the same instruction stream. According to [7], ”a warp in

SIMT is equivalent to a vector in SIMD, and a thread in

SIMT is equivalent to a vector lane in SIMD”. The instruction

Algorithm 1 Core instructions per cell update in similarity

matrix

1: E1 = El −Ge � El: E of its left neighbor

2: E2 = Hl −Go � Hl: H of its left neighbor

3: E = max(E1, E2)
4: F 1 = Fu −Ge � Fu: F of its upper neighbor

5: F 2 = Hu −Go � Hu: H of its upper neighbor

6: F = max(F 1, F 2)
7: H = Hul + SM � Hul: H of its upper-left neighbor

8: H = max(H,E)
9: H = max(H,F )

10: H = max(H, 0)
11: A = H � A: an auxiliary variable

12: S = max(H,S) � S: optimal score

throughput depends on the CUDA Compute Capability (CC)

of each NVIDIA GPU 2.

3) Architectural features on AMD’s GPU: In the RDNA2.0

architecture, the # Cores represent the number of Compute

Units (CUs), which are grouped in pairs into Workgroup

Processors (WP). On its behalf, AMD calls wavefront and

work-item the equivalent of NVIDIA’s warp and thread,

respectively. RDNA2.0 supports both wavefront sizes of 32

and 64 work items but the former is prioritized. Each CU

contains two SIMD32 vector units, being able to compute 64

add/subtract/max instructions per cycle (Int32). This means

that the instruction throughput is 2 for each work item.

4) Architectural features on Intel’s GPU: On the discrete

segment (dGPUs), Intel has a quite different GPU design

philosophy than NVIDIA and AMD. The fundamental block

of the Intel Xe microarchitecture is the Xe Core, each of

which has 16 Xe Vector Engines (XVEs) 3 that can execute

8 add/subtract/max instructions per cycle (Int32). Thus, Xe

Cores and XVEs map to # Cores and # Lanes, respectively,

in the proposed model.

On the integrated segment (iGPUs), both Gen9 and Gen12

microarchitectures are similar from a design perspective, dif-

fering mainly in the amount of computational resources. In

these microarchitectures, the fundamental block is the Sub-

slice, each of which has 8 Execution Units (EUs) that can

execute 8 add/subtract/max instructions per cycle (Int32).

Thus, Subslices and EUs refer to # Cores and # Lanes,

respectively, in the proposed model.

IV. EXPERIMENTAL RESULTS

A. Experimental Design

The experiments were carried out on a set of 10 GPUs,

including 6 NVIDIA dGPUs, 1 AMD dGPU, 2 Intel iGPUs,

and 1 Intel dGPU. The specific details of these GPUs can

be found in Table I. The oneAPI and CUDA versions used

were 2022.1.0 and 11.7, respectively. For both CUDA and

2https://docs.nvidia.com/cuda/cuda-c-programming-guide/#maximize-instr
uction-throughput

3Also known as Executions Units (EUs)



TABLE I
GPU SPECIFICATIONS AND THEIR THEORETICAL PEAK PERFORMANCE IN TERMS OF GCUPS

Vendor NVIDIA Intel AMD
Model GTX 980 GTX 1080 RTX 2070 V100 RTX 3070 RTX 3090 Arc A770 UHD 630 UHD770 RX 6700 XT
Type Discrete Discrete Integrated Discrete

Microarchitecture Maxwell
(CC 5.2)

Pascal
(CC 6.1)

Turing
(CC 7.5)

Volta
(CC 7.0)

Ampere
(CC 8.6)

Ampere
(CC 8.6)

Xe HPG Gen 9.5 Gen 12.2 RDNA 2.0

# Cores 16 20 36 80 46 82 32 3 4 40
# Lanes 32 32 32 32 32 32 16 8 8 32
Instruction
throughput 4/2 4/2 2 2 2 2 8 8 8 2

Clock (MHz) 1216 1733 1620 1380 1725 1695 2400 1200 1650 2581
Theoretical peak
(GCUPS) 155.648 277.28 311.04 588.8 423.2 741.2 819.2 19.2 35.2 550.61

The instruction throughput for GTX 980 and GTX 1080 is 4 for add/subtract and 2 for max/min. The core instructions include 5
add/subtract and 6 max. Thus the equivalent throughput is 3.
The core instruction count for each cell update is 12.

SYCL, the optimization flag -O3 was used during compila-

tion. To run SYCL code on NVIDIA and AMD GPUs, several

modifications had to be made to the build process, as SYCL

is not supported by default on these platforms4 but Codeplay

recently has announced free binary plugins5 to support it. After

these modifications, it was possible to run DPC++ code on an

NVIDIA GPU using the Clang++ compiler (16.0).

SW# was configured with BLOSUM62 as substitution ma-

trix, and 10/2 as insertion/extension gap penalty. The flag

T=0 was also used to remove the impact of the CPU on

the final performance (all sequence alignments are computed

thoroughly on the GPU).

The performance evaluation was carried out by searching

20 query protein sequences against the well-known Envi-

ronmental Non-Redundant database (Env. NR) (2021_04
Release), which contains 995210546 amino acid residues in

4789355 sequences, with a maximum length of 16925. Query

sequences were selected from the Swiss-Prot database 6, with

lengths ranging from 144 to 5478. The access numbers for

these queries are: P02232, P05013, P14942, P07327, P01008,

P03435, P42357, P21177, Q38941, P27895, P07756, P04775,

P19096, P28167, P0C6B8, P20930, P08519, Q7TMA5,

P33450, and Q9UKN1.

In order to minimize fluctuations, the tests were executed

20 times for each set, and the performance was determined

based on the average of these multiple runs.

B. Single-GPU Performance and Portability Results

A primary comparison was conducted between the perfor-

mance of CUDA and SYCL on NVIDIA GPUs (see Fig 2). As

can be seen, both programming models achieve practically the

same GCUPS values. On the one hand, the largest performance

difference in favor of SYCL was observed on the Tesla V100

(3.4%). On the other hand, the CUDA implementation did its

part on the GTX 980, outperforming SYCL by 4.6%. Thus,

4https://intel.github.io/llvm-docs/GetStartedGuide.html
5https://codeplay.com/portal/blogs/2022/12/16/bringing-nvidia-and-amd-s

upport-to-oneapi.html
6Swiss-Prot: https://www.uniprot.org/downloads

Fig. 2. Performance comparison between CUDA and SYCL on single,
NVIDIA GPUs

both CUDA and SYCL are capable of delivering comparable

performance for this case study on NVIDIA GPUs.

Table II presents a more detailed comparison of the perfor-

mance and architectural efficiency of CUDA and SYCL codes

on NVIDIA, AMD, and Intel GPUs. For each platform, this

table shows the peak theoretical performance, the achieved

performance for both CUDA and SYCL, and the correspond-

ing architectural efficiency.

On NVIDIA GPUs, CUDA and SYCL demonstrated com-

parable performance and efficiency values, as was already

noted in the analysis from Fig. 2. As expected, more powerful

GPUs are able to achieve higher GCUPS values. As for the

architectural efficiency values, they are in the range of 37%-

52%. It is important to note that, although the highest GCUPS

value is presented by RTX 3090 GPU, the most efficient one

turns out to be RTX 2070 GPU.

For AMD and Intel GPUs, only the results for SYCL are

shown, due to CUDA just supports NVIDIA GPUs. This fact

highlights the already mentioned greater portability of SYCL

over CUDA. It can be said that the results of the SYCL

version on these GPUs are generally good. On the one hand,

SYCL matches its best efficiency rate on NVIDIA GPUs when

running on AMD GPUs. On the other hand, SYCL beats



TABLE II
GCUPS AND ARCHITECTURAL EFFICIENCIES OF BOTH CUDA AND SYCL

CODES ON SINGLE GPUS.

Platform CUDA SYCL

Ve
nd

or

GPU GCUPS
peak

GCUPS
ach.

Arch
eff.

GCUPS
ach.

Arch
eff.

N
V

ID
IA

GTX 980 155.5 70.6 45.3% 67.7 43.5%

GTX 1080 277.2 104.5 37.7% 103.8 37.4%

RTX 2070 311.0 162.5 52.2% 163.1 52.4%

Tesla V100 588.8 224.9 38.2% 233.0 39.5%

RTX 3070 423.2 173.1 40.9% 174.4 41.2%

RTX 3090 741.3 280.2 37.8% 288.6 38.9%

In
te

l

Arc A770 819.2 × NA 191.4 23.3%

UHD 630 19.2 × NA 13.1 68.4%

UHD 770 35.2 × NA 26.6 75.7%

A
M

D RX 6700
XT

550.6 × NA 284.4 51.7%

that mark on the 2 integrated GPUs, achieving up to +23.1%

architectural efficiency. The only negative aspect is SYCL’s

performance on Intel’s Arc A770, where performance drops

to 23.3% of architectural efficiency. This value represents its

lowest performance and the cause could be related to Intel’s

discrete GPU design philosophy, which differs from NVIDIA

and AMD. However, we plan to profile the code to learn more

about this issue.

TABLE III
PERFORMANCE PORTABILITY OF BOTH CUDA AND SYCL CODES ON

SINGLE GPUS.

Φ̄(α, p,H)
Platform set (H) CUDA SYCL

NVIDIA 42% 42.2%
AMD NA 51.7%

Intel (discrete) NA 23.3%
Intel (integrated) NA 72.0%

Intel (all) NA 55.8%
NVIDIA ∪ AMD NA 44.3%
NVIDIA ∪ Intel NA 47.2%

Intel ∪ AMD NA 54.8%
NVIDIA ∪ AMD ∪ Intel NA 47.2%

The performance portability of both CUDA and SYCL

codes is evaluated in Table III, where it can be noted that

aggregated results are consistent with those observed on an

individual basis before. For NVIDIA GPUs, the performance

portability of both is quite similar, with values of 42% and

42.2%, respectively. As seen before, this indicates that both

programming models can deliver a consistent level of perfor-

mance across the different NVIDIA GPUs used in the tests.

In the case of Intel GPUs, SYCL demonstrated very good

architectural efficiency values on the iGPUs, in contrast to

the lower efficiency exhibited on the dGPU. Moreover, when

considering the combination of AMD and Intel GPUs, SYCL

achieves the highest performance portability of the middle set.

However, the performance portability decreases when NVIDIA

GPUs are also included (last set), as SYCL performance is

lower on these devices.

Building on the previous analysis, SYCL consistently out-

performs CUDA in terms of performance portability in this

study. To be more precise, SYCL achieved nearly the same ar-

chitectural efficiency as CUDA considering 6 NVIDIA GPUs

with 5 different microarchitectures. Moreover, SYCL was not

only able to run on multiple vendor GPUs (AMD and Intel),

but its architectural efficiency was superior in 3 of the 4 cases

tested. This demonstrates not only SYCL’s broad compatibility

but also its capability to improve performance across a diverse

range of GPUs for this application.

C. Multi-GPU Performance and Portability Results

To complement the previous single-GPU analysis, a perfor-

mance comparison was carried out between CUDA and SYCL

using different multiple NVIDIA GPUs (see Fig. 3). As is

the single-GPU case, the two programming models achieve

practically the same GCUPS values when NVIDIA devices

are used, for both homogeneous and heterogeneous multi-GPU

configurations. While CUDA outperforms SYCL when using

2×GTX1080 by approximately 1%, SYCL achieves the best

performance in all other cases, achieving up to 5% higher

GCUPS. Therefore, it can be noted that SYCL does not imply

additional overhead when multiple GPUs are used.

Table IV presents a more detailed comparison of the per-

formance and architectural efficiency of CUDA and SYCL

codes on 5 different multi-GPU configurations. It can be seen

that for NVIDIA multi-GPUs, the efficiency rates achieved

when using 2 GPUs combined are a bit lower than when

using a single GPU. This behavior occurs in 3 of the 4

configurations tested (the exception is when using 2×Tesla

V100) and can be explained by 2 reasons. On the one hand, it

is usual that the efficiency decreases when fixing the problem

size and increasing the amount of computational resources. On

the other hand, the workload distribution strategy of SW# is

very simple, since it distributes the query sequences among

the GPUs and does not consider each GPU computing power.

Because these sequences do not have the same length, load

imbalance can occur between GPUs, reducing performance.

Finally, SYCL once again demonstrates its increased func-

tional portability with Intel’s multi-GPU case. While the

performance is not good for the aforementioned reasons, it

is interesting to note how SYCL allows using 2 Intel GPUs

of different types at the same time: an iGPU and a dGPU.

V. RELATED WORKS

Some preliminary studies have compared the performance

between SYCL and CUDA in different domains. In [24],

the authors employed ADEPT, a GPU-accelerated short-read

alignment kernel, as a case study. They found that the SYCL

implementation runs approximately 2× slower than its CUDA

counterpart in all experiments when using an NVIDIA V100

GPU. The authors attribute this discrepancy to CUDA’s supe-

rior utilization of memory cache and SYCL’s greater reliance



Fig. 3. Performance comparison between CUDA and SYCL on multiple
NVIDIA GPUs

TABLE IV
GCUPS AND ARCHITECTURAL EFFICIENCIES OF BOTH CUDA AND SYCL

CODES ON MULTIPLE GPUS.

Platform CUDA SYCL

Ve
nd

or

GPUs GCUPS
peak

GCUPS
ach.

Arch
eff.

GCUPS
ach.

Arch
eff.

N
V

ID
IA

2×
GTX 1080

554.6 189.8 34.2% 187.8 33.9%

2×
Tesla V100

846.4 318.1 27.0% 336.5 28.6%

2×
RTX 3070

1177.6 306.5 36.2% 308.9 36.5%

Tesla V100
+

RTX 3090
1330.1 450.5 33.8% 460.7 34.6%

In
te

l Arc A770
+

UHD 770
854.4 × NA 126.8 14.8%

on register usage. Additionally, the authors verified SYCL’s

code portability on an Intel P630 GPU.

In [25], the authors delve into the process of migrating a

CPU+GPU application for epistasis detection from CUDA to

SYCL, founding that the highest performance of both versions

is comparable on an NVIDIA V100 GPU. However, it is

important to remark that some hand-tuning was required in

the SYCL implementation to reach its maximum performance.

When investigating the PTX code, the authors noted that

SYCL does not perform the same optimizations as CUDA,

such as loop unrolling.

In [26], the authors identified performance gaps in several

bioinformatics applications. The study involved the selection

of open-source applications that had been migrated from

CUDA to SYCL, followed by a comprehensive evaluation

of their performance on an NVIDIA V100 GPU. Through

profiling analysis, the authors found that the SYCL compiler

lacks certain optimizations that the CUDA version does,

including memory management, instruction vectorization, and

loop unrolling, among others.

In [27], a performance comparison is carried out between

SYCL and CUDA in the context of AI models. The authors

extend the SYCL-DNN library to include support for NVIDIA

GPUs using DPC++ and evaluate its performance against

the optimized cuDNN library. Initially, they observed that

the non-optimized SYCL-DNN is approximately 50% slower

than cuDNN due to a poorly optimized implementation of

SYCL for local memory. However, after using SYCL-BLAS,

a significant speedup of up to 90% of cuDNN’s performance is

achieved. The remaining 10% difference is attributed to hand-

written, optimized implementations in CUDA.

In [28], the authors compare two CUDA and SYCL versions

of the AutoDock-GPU molecular docking application on an

Intel Xeon Platinum 8360Y CPU, an NVIDIA A100 GPU, and

an Intel Max 1550 GPU. On the A100 GPU, SYCL exhibits

slower performance compared to CUDA in some cases, with

performance ratios ranging from 1.24× to 2.38×. However,

in the small test cases, SYCL outperforms CUDA by 1.09×.

The authors attribute the lower ratios to the synchronization

effort required in compute-intensive regions like the scoring

function and gradient calculation. They highlight the need for

deeper performance analysis and suggest further optimization,

particularly in compute-intensive areas, to improve SYCL

performance.

In [29], the authors analyze the performance of mini-apps

that have been created in both SYCL and CUDA, running on

an NVIDIA V100 GPU. Even though there are some features

not fully supported, SYCL performance is comparable to that

of CUDA. Moreover, the performance differences largely stem

from variations in memory access patterns.

In [30], the author evaluate the gap between performance

and code portability in HPC accelerators using the well-

known k-means algorithm comparing SYCL with CUDA and

OpenMP. SYCL implementation reports higher performance

on Intel GPUs and CPUs, equivalent performance on NVIDIA

GPUs, and offers potential multi-vendor compatibility.

Unlike the previous works and beyond the results obtained,

this performance portability study has considered different

GPU architectures, including single and multi-GPU config-

urations from multiple vendors. To the best of our knowledge,

no study has considered such a diverse and large set of GPUs.

VI. CONCLUSIONS AND FUTURE WORK

In the field of heterogeneous computing, ensuring functional

portability is not trivial for a programming language, and thus

providing performance portability represents an even greater

challenge. In this study, we address this issue by assessing

the portability and performance of the SYCL and CUDA

languages for the Smith-Waterman protein database search

across different GPU architectures from multiple vendors.

The experimental results show that CUDA and SYCL are

capable of delivering comparable performance for this case

study on NVIDIA GPUs, including single and multi-GPU

configurations. When moving to AMD and Intel GPUs, SYCL

was not only able to run on these devices, but its architectural

efficiency was superior in 3 of the 4 cases tested. This



demonstrates not only SYCL’s broad compatibility but also

its capability to improve performance across a diverse range

of GPUs for this application.

Since SYCL is still an immature programming model, the

positive results found here cannot be generalized; performance

will largely depend on the characteristics of the application

and the capabilities of the compilers. However, they are a

sample of the promising opportunities that SYCL can offer

for heterogeneous computing.

Future work will focus on:

• Optimizing the SYCL code to reach its maximum per-

formance. In particular, the original SW# suite does

not consider some known optimizations for SW align-

ment [22], such as instruction reordering to reduce their

count and the use of lower precision integers to increase

parallelism 7. Additionally, improving the workload dis-

tribution strategy when using more than one GPU. These

improvements will lead to higher efficiency rates.

• Running the SYCL code on other architectures (such

as CPUs and CPUs+GPUs) and also considering other

SYCL implementations (such as OpenSYCL and Com-

puteCPP), as well as other programming models like

Kokkos 8 and RAJA 9, to strengthen the current perfor-

mance portability study.
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