
Achieving Enhanced Performance Combining
Checkpointing and Dynamic State Partitioning

Henrique S. Goulart, João Trombeta, Álvaro Franco and Odorico M. Mendizabal
Programa de Pós-Graduação em Computação PPGCC

Departamento de Informática e Estatı́stica, Universidade Federal de Santa Catarina UFSC
Florianópolis, Santa Catarina, Brazil

sgoulart.henrique@gmail.com, joaog.trombeta@gmail.com, alvaro.junio@ufsc.br and odorico.mendizabal@ufsc.br

Abstract—Fault-tolerant systems rely on recovery techniques
to enhance system resilience. In this regard, checkpointing
procedures periodically take snapshots of the system state during
failure-free operation, enabling recovery processes to resume
from a previously saved, consistent state. Saving checkpoints,
however, is costly, as it must synchronize snapshots with the
processing of incoming requests to avoid inconsistency. One way
to speed up checkpointing is to partition the service state, al-
lowing a parallel checkpoint procedure to operate independently
on each partition. State partitioning can also improve through-
put by increasing parallelism in request processing. However,
variations in the data access pattern over time can result in
unbalanced partitions, posing a challenge to achieving optimal
performance. In this paper, aiming to improve both checkpointing
and overall system performance, we combine parallel check-
pointing with a dynamic graph-based repartitioning algorithm.
This work formalizes the optimization problem and presents
a detailed performance assessment of the proposed approach.
The experimental evaluation highlights the benefits of parallel
checkpointing and emphasizes the performance gains achieved
with repartitioning under realistic workloads. Comparing a cost-
effective round-robin partitioning approach with our dynamic
method, we examine the degree of execution parallelism achieved
by checkpointing threads and the influence of repartitioning
strategies on checkpoint performance. Although the rebalancing
of state partitions incurs a cost, it comes for free in our
technique since it takes advantage of processing idleness during
the snapshot-taking process.

Index Terms—fault tolerance, checkpoint/restore, state parti-
tioning, graph partitioning algorithms

I. INTRODUCTION

Fault-tolerant systems employ checkpoint/recovery to keep

services running uninterrupted. These techniques combine

durability strategies to maintain system availability and re-

silience, even in the presence of failures or potential threats.

Checkpoint procedures periodically capture snapshots of the

system’s state, facilitating recovery from faults and restoring

system states not too far behind the rest of the system [1], [2].

However, creating checkpoints can be resource-intensive as it

requires synchronization with incoming requests to establish

a consistent and recoverable snapshot of the system’s state.

As the system’s state grows, the I/O-intensive operations of

creating checkpoints can become a bottleneck.

This work received financial support of the Fundação de Amparo à Pesquisa
e Inovação do Estado de Santa Catarina - FAPESC and Federal University of
Santa Catarina - UFSC.

State partitioning approaches can reduce the checkpointing

overhead, as different portions of the system state can be

handled individually. Especially in multi-core architectures,

the state partitions may be saved in parallel, speeding up

the checkpoint procedure [3], [4]. Other specific hardware

technologies and system-level support for parallelism, such

as parallel I/O [5], NVM [6], and transactional memory [7]

can contribute to speeding up the checkpoint-related durability

operations.

Besides its potential to enhance checkpointing, the state

partition technique may also increase the overall system

throughput. By dividing the application state into smaller,

manageable pieces, partitioning enables the parallelization

of work, leading to faster execution compared to sequential

processing. When the workload is evenly balanced, services

may greatly benefit from multi-core architectures. However,

establishing a good partitioning of the service state is not

trivial since it requires information about the workload in

advance. Even if some information is available, the data access

pattern may change over time, causing unbalance.

In this paper, we propose a practical approach that combines

dynamic repartitioning with parallel checkpoints to reduce

checkpointing overhead and simultaneously rebalance state

partitions. Rebalancing state partitions resembles the balanced

graph partitioning problem, where the goal is to divide a graph

into disjoint subsets while balancing the weights of vertices in

each subset. In this arrangement, edges belonging to different

subsets are called cut-edges. Our approach not only aims to

balance the weights among subsets but also to minimize the

total weight of cut-edges. Although rebalancing state partitions

is costly, it comes for free in our approach. This is because

it occupies the processing cores for rebalancing while the

processing of incoming requests is interrupted by checkpoints.

This paper makes the following contributions. First, it

presents a parallel checkpointing procedure based on state par-

titioning. Although the state partitioning approach resembles

other state partitioning strategies found in literature [8], [9], the

novelty lies in the seamless integration of checkpointing with

repartitioning, incurring minimal additional costs. Second, the

paper formalizes the optimization problem to be solved by

the dynamic repartition approach. Finally, an experimental

evaluation carefully demonstrates the pros and cons of the pro-

posed technique. The evaluation exercises realistic workloads



provided by the YCSB benchmark [10] and compares our

dynamic approach with a cost-effective partitioning approach

that evenly distributes state variables across partitions using a

round-robin fashion.

The experiments indicate that the time required to rebalance

partitions can be effectively concealed by the checkpoint

duration, except in cases where the checkpoint sizes are small.

In addition, the repartitioning enables an increase in overall

throughput in workloads with cross-partitioning requests (e.g.,

range scans and multi-variable operations). Results shown a

throughput improvement of 2.5 times in such workloads.

The structure of this paper is as follows. Section II explores

related work, while Section III presents our approach, which

involves parallel checkpointing with dynamic repartitioning.

The performance evaluation of the proposed approach is

detailed in Section IV. The paper concludes with Section V.

II. RELATED WORK

The growing demand for high-performance and scalable

applications has increased interest in optimizing application

state management. Partitioning the state of an application is

a well-established technique for enhancing performance in

parallel and distributed systems. As the hardware landscape

evolved to include multi-core processors and many-core archi-

tectures, partitioning has become increasingly relevant, with

recent research exploring new ways to apply it effectively

[11]–[16]. Several studies aim to enhance partitioning schemes

to increase application robustness, throughput, and response

time. While not explicitly focused on checkpointing, these

studies offer valuable insights into how repartitioning can

boost overall application performance.

The research of [8] presents Schism, a workload-aware

method for database partitioning. The study highlights the high

cost of distributed transactions that spawn multiple partitions.

It emphasizes that automatic partitioning schemes, such as

round-robin, range, and hash-partitioning, are the most used

in modern distributed systems. While these approaches excel

in delivering efficient large-range scan performance, they

exhibit limitations in effectively scanning shorter ranges. The

suggested approach employs a graph partitioning heuristic

that aims to reduce the cost of graph cuts while balancing

the weight of each partition. The method represents database

tuples as nodes within a graph, and edges represent the

tuples concurrently accessed by transactions. Each time a

tuple is accessed, the weight of the corresponding node is

incremented. If multiple tuples are accessed simultaneously by

a single transaction, the weight of the edges linking the nodes

representing these tuples is incremented. The research utilizes

two distinct heuristics: the first considers the partition size as

the node’s weight, while the second considers the number of

accesses as the node’s weight.

A key challenge the study presents is how to efficiently

handle large databases as graph representations grow with

increasing database size and transaction complexity. Graph

partitioners scale effectively regarding partition count, but their

runtime escalates with graph size. In this regard, sampling

heuristics have been developed to reduce graph size while

maintaining a decent partitioning quality. The study affirms

that by minimizing distributed transactions and maintaining a

balanced workload among the nodes, the service can signif-

icantly enhance transaction throughput for databases. These

findings align with the results presented in Section IV. We

show that repartitioning can effectively reduce the synchro-

nization costs with cross-partition requests. Differently from

[8], the costs related to partitions’ rebalancing are negligible

with our approach.

In [9], authors introduce SWORD, a framework designed

to address various challenges in database partitioning. It

minimizes book-keeping overhead by employing a two-phase

strategy. The first phase compresses the hypergraph, while the

second partition the compressed hypergraph. This approach

reduces the size of mapping tables, which are essential in

directing transactions to the correct partition. The framework

manages workload alterations by monitoring and detecting

substantial changes and adjusting the partitioning in incre-

mental steps. Incremental repartitioning helps alleviate per-

formance decline caused by workload fluctuations without a

complete repartitioning process. The framework also integrates

a workload-aware replication mechanism to resolve transaction

conflicts, enhancing data placement.

While the research presented in [9] proposes incremental

repartitioning, we claim that utilizing the idle time resulting

from I/O during the checkpointing process may be sufficient

to execute a full repartitioning. This alternative approach

simplifies the implementation process by avoiding the need

for incremental repartitioning, monitoring, and other SWORD

auxiliary components.

DYPART [17] is a framework designed for dynamic state

partitioning in Byzantine Fault Tolerance (BFT) protocols

that leverage parallel execution of requests [18], [19]. Its

primary function is gathering and segmenting application

states into partitions, which are then reconfigured in real-time

to optimize performance. Each replica continuously observes

the dependencies among requests and constructs a graph that

represents the state objects’ relationships. DYPART handles

operations that involve multiple partitions, known as cross-

border requests, while ensuring deterministic execution. The

state partitioning update is linked with the checkpoint mech-

anism to maintain determinism and minimize overhead. Upon

reaching the checkpoint threshold, a new checkpoint is created,

and each replica executes the graph partitioning algorithm,

aiming to maintain a low cross-border request rate.

Similarly to DYPART, our approach also benefits from CPU

idleness during checkpoints to execute the state repartition.

However, DYPART lacks a comprehensive analysis of the

impacts of combining checkpointing and repartitioning. The

study utilized only one workload for experimental evaluation

and discussion, primarily focused on representing relationships

between accessed objects that depict the interaction between

characters in Les Misérables provided by the Stanford Graph

Base [20]. In contrast, our study formalizes the optimization

problem and conducts experimental evaluations using realistic



workloads to assess the effects of combining checkpointing

and repartitioning in a broader context.

Related research on checkpoint techniques has a vast

literature ranging from operating systems, databases, high-

performance computing, cloud computing, and dependable

and distributed systems. Although we adopt a partitioned

parallel checkpoint strategy, other approaches, such as fuzzy

or incremental checkpoints, could be applied without limiting

the approach generality. Thus, we consider improvements in

the checkpoint strategy orthogonal to this work. In [1], the

authors present the background and the main strategies for

checkpointing in message-passing systems. Checkpointing in

HPC is addressed in [2], and in [21], authors discuss the

evolution of checkpoint techniques over the past decades.

III. PARALLEL CHECKPOINTING WITH DYNAMIC

REPARTITIONING

This section presents a partitioned checkpointing approach

combined with dynamic state repartition. The objective of

the proposed approach is twofold: to speed up checkpoint

execution and to take advantage of processing idleness while

taking checkpoints to improve the balance of state partitions.

In the following, we describe the state partitioning strat-

egy adopted, the parallel checkpointing, and the optimization

problem definition for state repartitioning.

A. State Partitioning Execution Model

In this work, the application state S is a set partitioned

into n disjoint sets, each one called partitions. The set of

partitions is {p1, p2, ..., pn} and the union of the elements of

each pi is equal to S. The system executes n worker threads,

where thread ti is responsible for the execution of requests

involving the partition pi. An arbitrary request r executes over

a set of keys. Let K(r) be the set of keys accessed by r,

and let P (k) be the partition to which a key k is designated.

Every thread ti has its own queue qi, with requests that access

its designated partition pi. Thus, when a request r arrives, a

scheduler places it in the queues of every thread whose keys

are accessed by r. Formally, r is placed in queue qi for all i
such that pi ∈

⋃
k∈K(r) P (k).

As an example, assume a system with state S = {x, y, w, z}
and a set of threads T = {t1, t2}. Fig. 1 represents a possible

state partitioning with threads t1 and t2 being responsible for

updates in partitions p1 = {x, y} and p2 = {w, z}, respec-

tively. The figure also shows threads’ queues after receiving

requests r1 to r7. As can be observed, r1 accesses x, and

once x ∈ p1, r1 is dispatched to t1, and so on for every other

request. Requests are dispatched respecting the delivery order

to the appropriate queues. In this example, requests semantics

are defined by commands write(k, v) and swap(ki, kj), where

write updates the variable given by the key k with a value v,

and swap mutually changes the values of keys ki and kj .

In Fig. 1, requests r1, r3, r5, r6, and r7 are single-variable

requests, and they can be executed in order, one by one, with-

out synchronization. Single-partition multi-variable requests

access multiple keys that belong to the same partition, so the

same thread t executes them. In the example, request r2 is a

single-partition multi-variable. Cross-partition multi-variable
requests access two or more variables, and at least two of

them belong to different partitions. Request r4 is a cross-

partition multi-variable request, and it accesses variables y
that belongs to thread t1’s partition, and z that belongs to

thread t2’s partition. This kind of request requires threads

synchronization to implement atomicity and, consequently,

maintain consistency.

t1 t2
Partition p1

Queue q1

x y

r1: write(x, 1)

r2: swap(x, y)

r3: write(w, 1)

r4: swap(y, z)

r4: swap(y, z)

Partition p2

Queue q2

r5: write(z, 2)

...
...

w z

r6: write(x, 2) r7: write(w, 2)

Fig. 1. Example of requests scheduling across thread queues.

Fig. 2 illustrates an execution trace for the threads t1 and t2
exemplified by Fig. 1. All threads run in parallel, r1, r3, r5,

r6, and r7 are single-variable requests, so they are executed as

soon as they are in the head of their threads’ queue. Request r2
is a multi-variable single partition request. It involves x and y,

both in p1, so it can be executed by t1 without synchronization.

Request r4 is a cross-partition multi-variable request. Then, it

is present in both t1 and t2 queues. When t2 retrieves r4 from

its queue, it waits for t1 in a barrier, as represented by the

dotted curve. When t1 retrieves r4, all involved threads are

ready, and r4 is executed by one arbitrary thread only, for

instance, the one with the lowest id (in this example, thread

t1). After that, both threads t1 and t2 are allowed to continue.

In the time between t2 reaching r4 and r4’s execution by t1,

t2 remains completely idle.

t1

t2

...

...

r1

r3

r2

r4

r4

r5

r6

r7

Fig. 2. Execution of system in Fig. 1.

B. The parallel checkpoint

This approach aims to benefit from the parallelism in

modern hardware, both in processing and I/O. The goal is to

parallelize the checkpointing operation, potentially speeding

up saving and restoring the checkpoint state.

The checkpointing approach features multiple threads, each

tasked with saving a designated partition of the entire state.



The execution scheduler is responsible for initiating a check-

point. The scheduler periodically adds a checkpoint request
to all the partition’s queues. The checkpoint request is a

cross-partition multi-variable involving all partitions, so it

synchronizes all checkpoint threads to execute the complete

checkpoint in parallel. The checkpointing procedure awaits the

completion of the process by each partition thread.

For example, partitions p1 and p2 in Fig. 1 can be saved in

parallel, speeding up the checkpoint. Computers with multiple

storage devices can even benefit from parallel I/O to improve

throughput while snapshotting the application state. The time

to accomplish a checkpoint is given by the time taken by the

slowest thread to finish. The local checkpoint is now composed

of multiple files, each representing a snapshot of a single parti-

tion. The recovery procedure also benefits from the partitioned

schema as it can restore multiple files in parallel. We do not

discuss recovery in this paper, as it is straightforward. In this

case, the only difference is that a checkpoint is composed of

multiple files, and restoring a consistent state requires the set

of files to be completely restored before starting the process

execution.

C. Augmenting checkpoint with repartitioning

Despite the potential parallelism observed by state partition-

ing, the execution performance of incoming requests highly

depends on how the scheduler distributes requests among

worker threads since poor scheduling results in expensive

synchronizations [13]. Establishing a good partitioning of the

service state is not trivial since it requires information about

the workload in advance. Moreover, even if some information

is available, the data access pattern may change over time,

causing a local good data partitioning to perform poorly under

workload global changes. Therefore, dynamic repartitioning

running at run-time might enhance load balancing across the

partitions.

Graph algorithms may support repartitioning strategies, and

they are widely used to solve problems in various fields,

such as road mapping, computer networking, and database

representation. In our case, a graph may represent the access

in the multi-partitioned state, and we define the repartitioning

optimization problem as follows.

1) Problem Definition: Suppose that a system maintains

the use of each state variable as the following. The system

registers how often the variables were triggered by read and

write requests, possibly by requests involving many variables

(we call multi-variable requests). This historic can be orga-

nized in a vertex-edge weighted graph where vertices represent

the variables, the number of requests that use a variable is

the weight of the corresponding vertex (ci for vertex i), the

edges represent the multi-variable requests, and the weight

of the corresponding edge gives the number of times that

the two variables appear in multi-variable requests (wij for

edge ij). Now, the system can use this graph to suggest, in

certain periods, a state partition P = {p1, . . . , pk} such that

it meets the interest of the application. Here, each pi in P
must be “balanced”, i.e., the sum of the weights of all vertices

belonging to it is not so different when compared with the

weight of another pj in P ; another important property of the

application is that the sum of the edges that have vertices

in different parts of P is minimum. From the application’s

point of view, the first objective helps to accelerate the parallel

saving of the state, and the second helps to reduce the online

synchronization of requests. This problem is known as the

balanced partition minimum cut problem. It is NP-hard [22],

and many heuristic methods trying to solve it, e.g., [11], [12],

[23], [24]. The Metis [23] is a heuristic much used in this

case.

Our approach proposes a two-phase model to treat the

balanced partition minimum cut problem. The first phase finds

a balanced partition. The second phase finds a minimum cut

considering the balanced partition given by the first phase.

The number of partitions does not vary and is informed at

initialization. Next, it is given a formulation of the problem in

two phases.

a) Phase 1: Consider an integer variable y, which means

the slack to pack all vertices into partitions. This variable

should be as small as possible to ensure some balance. We

also have binary variables xip defined as the following.

xip =

{
1, if vertex i belongs to partition p,

0, otherwise.

For the first phase problem, we assume a fixed k. Consider

a set of k partitions P = {p1, . . . , pk} and C =
∑

i∈V ci.
We want to pack all vertices in partitions from P so that each

partition is not too “heavy”. The integer programming model

is

min y
subject to:

∑
p∈P xip = 1, ∀i ∈ V (1)∑
i∈V cixip ≤ C

k + y, ∀p ∈ P (2)
xip ∈ {0, 1}, ∀i ∈ V and ∀p ∈ P (3)
y ∈ Z

+. (4)

Constraint (1) ensures that each vertex is in (exactly) one

partition. Constraint (2) ensures that each partition is not too

“heavy” in an optimal solution since we want to minimize y.

Constraints (3) and (4) mean that the variables xip are binary

and y is an integer, respectively.

b) Phase 2: Since the value of the variable y is already

known from Phase 1, set M = C
k +y. Now, it is desired to find

the minimum cut considering such value to y. The variables

xip are kept, and new binary variables zijp are defined as the

following.

zijp =

⎧⎨
⎩

1, if edge i− j has the both vertices i and j in

partition p,

0, otherwise.



min
∑

i−j∈E wij(1−
∑

p∈P zijp)

subject to:
∑

p∈P xip = 1, ∀i ∈ V (5)∑
i∈V cixip ≤ M, ∀p ∈ P (6)

zijp ≤ xip, ∀i− j ∈ E and ∀p ∈ P (7)
zijp ≤ xjp, ∀i− j ∈ E and ∀p ∈ P (8)
zijp ≥ 1

2 (xip + xjp)− 1
2 , ∀i− j ∈ E,
∀p ∈ P (9)

xip ∈ {0, 1}, ∀i ∈ V and ∀p ∈ P (10)
zijp ∈ {0, 1}, ∀i− j ∈ E. (11)

Constraints (5) and (6) ensure a balanced partition. Con-

straints (7), (8) and (9) find the edges inside partitions.

Constraints (10) and (11) mean that the variables xip and

zijp are binaries. Since constraint (5) ensures each vertex i in

exactly one partition p, for an edge i−j or both of its vertices

are in one partition p (when i and j are in p) or at most one

of them is in p. When both vertices are in p, zijp is forced to

be 1 by constraint (9). Otherwise, zijp is forced to be 0 by

constraints (7) or (8). Therefore, given a fixed edge i− j, the∑
p∈P zijp is equal to 1 only when both vertices i and j are

in the same partition p. So, the sum of the weight of edges

between partitions can be done as described in the objective

function of the Phase 2 problem.

Note that any feasible solution of Phase 1 problem can

be used to construct a feasible solution of Phase 2 problem.

Given a feasible solution y and xip to the first problem, the

x variables can be maintained in the second problem and set

zijp = 1 for any edge ij only if xip = 1 and xjp = 1 (zijp =
0, otherwise).

2) Implementation: The checkpoint process incurs signif-

icant costs due to intensive I/O operations, yet it leaves

room for additional processing usage during its execution.

Recognizing this underutilization of CPU, we propose masking

the cost of repartitioning by executing it concurrently with the

checkpointing.

When a checkpoint process starts, the system simultane-

ously begins repartitioning. The system returns to its regular

operation after both processes are complete. For effective

repartitioning, the scheduler tracks requests and their re-

spective partitions. Additionally, it upholds a data structure

linking each variable to its specific partition, which aids in

understanding the workload behavior.

The scheduler annotates partition accesses using a graph

structure: each command key access is tied to a vertex. Each

partition access increments its respective vertex value. For

commands like swap(a, b), which access multiple variables,

an edge is formed between the vertices of a and b. Subsequent

similar accesses increase the value of this edge. In this model,

it is worth noting that each edge denotes a connection between

two variables. Thus, a multi-variable request accessing three

variables, for example, is represented by three distinct edges

connecting each variable pair.

The repartitioning function utilizes the scheduler’s graph,

capturing the entire workload context. With the vertex and

edge values, the algorithm reallocates the graph to ensure

nearly equal weight for all partitions. It also weighs the cut
cost for each partition, which refers to the edges connecting

different partitions. The primary aim is to lower the cut cost

while maintaining balanced partition weights.

3) Repartitioning algorithm: We utilized the METIS [23]

for the balanced partition minimum cut problem because of

its popularity and academic significance. This algorithm has

three stages:

Coarsening: The graph is simplified by collapsing vertices

and edges, creating a reduced version. A method called Heavy

Edge Matching (HEM) merges vertices, focusing on those with

high edge weights to minimize cut-edges between different

subsets.

Partitioning: The reduced graph is divided into balanced

sections. Initially, a 2-way partition is made, further split in

subsequent iterations until the desired k-way partitions are

reached. A spectral bisection algorithm, influenced by the

Laplacian matrix values, handles the partitioning [25], [26].

Uncoarsening: The original graph is reconstructed, keeping

the partition details from the previous stages. The algorithm

translates the partition data from the simplified graph back

to the original while undoing the vertex merges from the

coarsening stage.

This approach ensures quicker processing times, especially

with larger graphs.

IV. EVALUATION

In this section, we present an experimental evaluation of our

proposed approach. A key-value store prototype was developed

in C++, integrating our parallel checkpointing strategy. The

prototype consists of the following components: an in-memory

key-value map storage; partition threads, each with individual

request queues; a scheduler task that dispatches requests to

each partition queue; checkpointing threads that activate the

checkpoint operation after a given number n of requests

have been dispatched, and all partition threads received a

checkpointing request from the dispatcher.

Our analysis primarily focuses on the execution of requests,

with the client-side and network layer abstracted for simplicity

and to avoid interference. All requests are pre-loaded into

memory before the start of the experiment. The scheduler then

dispatches these requests for execution. Consequently, the cost

metrics under examination are scheduling, request execution,

thread synchronization, and repartitioning.

The experiment was conducted on a machine equipped with

an Intel i5-11400F processor, 32GB of RAM, and a 1GB

Samsung NVMe (980 PRO m2) storage unit.

This study analyzes the effects of checkpointing and repar-

titioning on comprehensive service performance. Upon re-

ceiving a request, data is divided into eight fixed partitions,

with each key initially assigned to these partitions using a

round-robin algorithm. The experiment maintains eight worker

threads to execute regular operations but varies the number of

checkpoint threads. We selected 8 worker threads, a choice

influenced by the processor’s capabilities encompassing 12

threads spread over 6 cores. This allocation considers the



additional load from an active scheduler and the operational

demands of the system.

The study explores four distinct partitioning configura-

tions: (i) Round-robin partitioning without checkpointing or

repartitioning, representing a scenario devoid of checkpoint

interference; (ii) A singular checkpointing thread handling the

entire state, exemplifying a conventional checkpoint procedure

devoid of parallelism; (iii) A parallel checkpoint involving

eight checkpoint threads, but devoid of repartitioning; and (iv)

A parallel checkpoint with eight threads and repartitioning ac-

tivated, where repartitioning is initiated whenever a checkpoint

is triggered.

We call attention to the version using the repartitioning

algorithm, as this study aims to assess the feasibility of

leveraging idle processing resources during the checkpointing

process.

A. Workload

We used the Yahoo! Cloud Serving Benchmark (YCSB)

[10] to generate diverse workloads simulating real-world sce-

narios. In particular, we evaluate the impact of the differ-

ent prototype configurations under load profiles that experi-

ence single-variable requests distributed over the state space

(YCSB-A), distributions aiming to intensify the access to

variables recently inserted by the previous requests (YCSB-

D), and multi-variable requests implemented by range scan

requests (YCSB-E). Based on our expectations that the YCSB-

B and YCSB-C workloads would produce results analogous

to YCSB-A, we excluded them from this evaluation.

More precisely, YCSB-A comprises single-variable re-

quests, 50% reads, and 50% writes. In YCSB-D, 5% of

requests are insertions, and 95% are reads. Those reads are

performed mainly on the newly inserted keys. In YCSB-

E, 95% of the requests are range scans, i.e., multi-variable

requests, while 5% are insertions. Scans access at most 8 keys

together. It is worth noting that workload E distinguishes itself

from the others as it uniquely involves operations accessing

multiple keys, which may reside within the same partition or

across different partitions, all within a single operation.

Regarding workload YCSB-A, 94 million requests were ex-

ecuted involving 8 million unique keys. Similarly, for YCSB-

D, there were 110 million requests with 10 million unique

keys; for YCSB-E, 6 million requests were performed with 2

million unique keys.

For the performance analysis, we analyzed the throughput,

makespan, time spent on checkpointing and repartitioning,

checkpointing sizes, and request distribution.

B. Throughput impact

Fig. 3 illustrates the time-based throughput, denoting the

number of requests executed per second. The applied workload

is the YCSB-A, characterized by its update-heavy nature. The

graph encompasses four distinct configurations: no-ckp, which

serves as the baseline with no checkpoints performed; 1p-ckp,

wherein a single, non-partitioned checkpoint is performed by

one thread; 8p-ckp, which involves the execution of parallel

checkpoints by eight threads; and 8p-ckp-metis, where parallel

checkpoints are executed by eight threads while simultane-

ously implementing the METIS algorithm for repartitioning.

In this workload, the first checkpoint’s execution begins

just before the 20-second mark, evident from a decreased

throughput due to checkpoint processing. The drop is espe-

cially noticeable in the 1p-ckp configuration, which sustains

zero throughput for about ≈ 50s. In contrast, the parallel

configurations, 8p-ckp, and 8p-ckp-metis, display a more ef-

ficient checkpointing, evidenced by only about ≈ 20s of

no throughput. This efficiency underscores the advantages of

parallel configurations in managing checkpointing states.

0

100k

200k

300k

400k

500k

600k

700k

800k

900k

 0  20  40  60  80  100  120  140

T
h

ro
u

g
h

p
u

t 
(R

e
q

u
e

st
s/

s)

Time (s)

8p-ckp-metis

8p-ckp

1p-ckp

no-ckp

Fig. 3. Throughput over time for YCSB-A.

Fig. 4 presents the same metrics as before but with the

YCSB-D workload instead. The YCSB-D workload is charac-

terized as a “read latest” workload, where the most recently

inserted data is accessed the most frequently. The results are

similar to those of the workload YCSB-A but with a higher

throughput attributed to the predominance of read operations.

0

200k

400k

600k

800k

1M

1M

1M

2M

 0  20  40  60  80  100  120  140

T
h

ro
u

g
h

p
u

t 
(R

e
q

u
e

st
s/

s)

Time (s)

8p-ckp-metis

8p-ckp

1p-ckp

no-ckp

Fig. 4. Throughput over time for YCSB-D.

The most intriguing findings from the experiments emerged

from the YCSB-E workload. Unlike other workloads, its oper-

ations access multiple data variables. Characterized by short-

range scan operations, the YCSB-E workload simultaneously

accesses more than one variable. These scan operations target



key ranges from 1 to 8, indicating the presence of operations

scanning as few as one key (single access) and extending up to

those scanning eight keys. Furthermore, the YCSB-E workload

is predominantly read-based (95% of reads and 5% of writes).

The throughput observed for this workload is considerably

lower than that of the previously mentioned workloads, as

shown in Fig. 5. This decrease in performance is attributed to

the increased cost associated with reading multiple variables

that may be distributed across different partitions and the

synchronization required among the threads assigned to the

involved partitions. The figure demonstrates an increase in

throughput after each execution of our checkpoint technique.

The main reason for this behavior is the repartitioning algo-

rithm, which moves variables accessed simultaneously to the

same partition. While the experiment indicates that partitioned

checkpoints take a similar amount of time to execute, the

throughput achieved with repartitioning (8p-ckp-metis) expe-

riences noticeable gains compared to the versions without

repartitioning (8p-ckp), reaching ≈ 2.5 times more throughput.

Although no-ckp, 1p-ckp, and 8p-ckp configurations also

operate with eight execution threads for partitions, they are

limited to a very similar throughput level. This stems from the

fact that range scans force many threads to synchronize as the

variables involved in the operation are in different partitions.

0

20k

40k

60k

80k

100k

120k

140k

160k

 0  20  40  60  80  100  120  140

T
h

ro
u

g
h

p
u

t 
(R

e
q

u
e

st
s/

s)

Time (s)

8p-ckp-metis

8p-ckp

1p-ckp

no-ckp

Fig. 5. Throughput over time for YCSB-E.

C. Cross-border access

In this study, we use the term “cross-border access” to de-

note multi-variable requests that interact with variables located

in separate partitions. The experiment tracks the number of

worker threads involved in the execution of the request. The

number ranges from one, when all variables are in the same

partition, to eight, when the eight variables accessed are in

different partitions. Fig. 6 illustrates the cross-border access

distribution of the YCSB-E workload performed by the scan

operations.

The 8p-ckp-metis configuration stands out as significantly

different from the others. It demonstrates that most scan op-

erations access keys within the same partition, which justifies

the increased throughput for this workload as it does not need

to synchronize partitions as much as the others need.

0.0

500.0k

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

4.0M

4.5M

1 2 3 4 5 6 7 8

R
e

q
u

e
st

s 
e

x
e

cu
te

d

Num. of partitions accessed

8p-ckp-metis

8p-ckp

1p-ckp

no-ckp

Fig. 6. Cross-border access for YCSB-E.

D. Balancing distribution

In the following results, distribution denotes the number of

requests each partition executes, with the x-axis corresponding

to the thread. Notably, the 8p-ckp-metis configuration out-

shines the others in achieving a more balanced distribution

for workload YCSB-A and YCSB-E, as shown in Fig. 7

and Fig. 9. Conversely, this configuration failed to balance

workload YCSB-D efficiently (see Fig. 8) predominantly due

to the novelty of most of the requests’ keys.

0

2M

4M

6M

8M

10M

12M

14M

16M

0 1 2 3 4 5 6 7

R
e

q
u

e
st

s 
e

x
e

cu
te

d

Partition

8p-ckp-metis

8p-ckp

1p-ckp

no-ckp

Fig. 7. Access Distribution for YCSB-A.

The unbalancing causes one partition thread to take longer

to execute while other checkpoint threads are idle, waiting

for that one to complete. Given that the heavier partition

thread has to save more data, it negatively impacts the parallel

checkpoint duration. Despite the repartitioning algorithm’s

efforts to distribute the requests equally, it has yet to pro-

duce a more efficient partitioning scheme. Workload YCSB-

D changes the range of keys more likely to be accessed

over time, representing, thus, a challenging workload for the

repartitioning algorithm.

An adaptive repartitioning strategy could be employed for

dealing with dynamic workloads like the YCSB-D. The system

should assess the current scheme’s effectiveness and only

repartition if performance improvements are observed, opti-



0

2M

4M

6M

8M

10M

12M

14M

16M

18M

0 1 2 3 4 5 6 7

R
e

q
u

e
st

s 
e

x
e

cu
te

d

Partition

8p-ckp-metis

8p-ckp

1p-ckp

no-ckp

Fig. 8. Access Distribution for YCSB-D.

0

100k

200k

300k

400k

500k

600k

700k

800k

900k

0 1 2 3 4 5 6 7

R
e

q
u

e
st

s 
e

x
e

cu
te

d

Partition

8p-ckp-metis

8p-ckp

1p-ckp

no-ckp

Fig. 9. Access Distribution for YCSB-E.

mizing efficiency and reducing unnecessary overhead. This ap-

proach makes the system better suited for evolving workloads.

E. Checkpoint sizes and duration

The checkpoint sizes refer to the size of each checkpoint

partition, representing the average size, in GB, of all check-

points executed by that partition during the test executions.

Fig. 10, 11, and 12 present a comparison between two config-

urations in terms of partition sizes. The 8p-ckp configuration

uses the round-robin approach to distribute the keys among

the partitions, which is the best partition scheme for state

distribution and serves as a baseline. On the other hand, the 8p-
ckp-metis approach is dynamic and alternates variables from

partitions according to workload.

Fig. 10 and 12 showcase the most disparate partition size

distributions under the 8p-ckp-metis configuration. This in-

equity in partition sizes is an unintended consequence of our

partitioning approach. Our strategy prioritizes balancing vari-

able access across partitions and minimizing synchronization

disruptions from multi-variable requests while concurrently

striving to maintain approximate partition balance. The hor-

izontal lines indicate the larger partitions for 8p-ckp-metis
(orange color) and 8p-ckp (red color). As observed, a perfectly

distributed partitioning achieved by the round-robin scheme

results in state partitions of around 4 GB for the workload

YCSB-A, while with our approach, one partition accounts for

5GB. When considering the YCSB-E workload, we notice a

partition of 1.5 GB compared to 1.1 GB from the perfect-

balanced partitions.
Fig. 11 shows a better state distribution for the 8p-ckp-

metis, in light of the previously mentioned characteristics

inherent to this specific workload. In order to improve further

the state distribution for checkpoint threads, the repartitioning

algorithm would have to consider the state size and not just the

number of requests and synchronization costs, as implemented

in our approach.

 0

 1

 2

 3

 4

 5

 6

0 1 2 3 4 5 6 7

S
iz

e
(G

B
)

Partition

8p-ckp-metis 8p-ckp

Fig. 10. Checkpoint sizes for YCSB-A.

 0

 1

 2

 3

 4

 5

 6

0 1 2 3 4 5 6 7

S
iz

e
(G

B
)

Partition

8p-ckp-metis 8p-ckp

Fig. 11. Checkpoint sizes for YCSB-D.

As expected, the time taken to execute the checkpoint

varies proportionally to the largest partition state size. Fig. 13

illustrates the average time required to take the checkpoint in

the three workloads (YCSB-A, YCSB-D, and YCSB-E). As

demonstrated in the figure, the time required for the check-

point procedure with repartition (8p-ckp-metis) and without

repartition (8p-ckp) is comparable.
Fig. 14 provides a time breakdown consisting of the time

the repartition algorithm takes to execute and the time required

for the checkpoint process, which includes reading the in-

memory map and writing it to stable storage. It is notable that



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 1 2 3 4 5 6 7

S
iz

e
(G

B
)

Partition

8p-ckp-metis 8p-ckp

Fig. 12. Checkpoint sizes for YCSB-E.

 0

 5

 10

 15

 20

 25

A D E

E
la

p
se

d
 t

im
e

 (
s)

Workload

8p-ckp-metis 8p-ckp

Fig. 13. Checkpoint duration for workloads YCSB-A, D, and E.

writing the checkpoint to stable storage incurs a significant I/O

cost, as corroborated by the substantial sizes of the checkpoint

files written, as shown in Fig. 10, 11, and 12. Furthermore,

the figure supports our intuition that executing a repartition

algorithm within a reasonable timeframe is feasible, given

a processor that is not fully utilized while performing I/O

operations. This figure is related to the workload YCSB-A

but a similar behavior occurs for YCSB-D and YCSB-E.

 0

 5

 10

 15

 20

 25

25 67 108 148 191 232

D
u

ra
ti

o
n

 (
s)

Checkpoint starts at (s)

Repartition Checkpoint

Fig. 14. Checkpoint and repartition duration for YCSB-A.

It is important to note that the duration of the checkpoints

in this experiment directly correlates with the size of the key-

value pairs in memory. The experiment was conducted using

a key size of 4 bytes and a value size of 4kB, accounting

for snapshot sizes of 32GB and individual partition sizes of

around 4GB.

Another experiment was conducted, but we used 1kB values

in this iteration to ascertain the potential durations of the

checkpoint and repartition processes. Consequently, the sizes

of the checkpoint files were smaller, which implied the short

time required to read the memory and write the checkpoint

file. Moreover, Fig.15 reveals that the repartition process

could incur a higher cost than the checkpoint process for this

configuration. At instant 71, the repartition took 1s more than

checkpointing. This consideration should be factored in when

deciding whether to employ a repartitioning algorithm.

 0

 1

 2

 3

 4

 5

 6

 7

9 24 40 55 71 87

D
u

ra
ti

o
n

 (
s)

Checkpoint starts at (s)

Repartition Checkpoint

Fig. 15. Checkpoint and repartition duration for YCSB-A with keys of 1kB.

F. Makespan

This study evaluates the impact of checkpointing config-

urations on the makespan. This metric measures the time

required to complete the entire execution. Thus, this analysis

aims to assess the effectiveness of different checkpointing

configurations in minimizing makespan time.

We set up all experiment configurations with the same

number of requests, and the results are presented in Fig. 16

using the workload YCSB-A.

A notable observation from the figure is that the 8p-ckp-
metis configuration achieved a similar makespan compared

to the other partitioned configuration without repartitioning.

Interestingly, while Fig. 3 indicates that the 8p-ckp-metis and

8p-ckp configurations had similar throughput and Fig. 10

depicts an unbalancing the partition sizes when using variable

partitioning, the better distribution of requests across threads

compensates in the overall performance. Observe that the

makespan of 8p-ckp-metis and 8p-ckp are practically the

same in Fig. 16. Furthermore, the results demonstrate that

partitioned checkpointing offers a substantial advantage over

non-partitioned checkpointing regarding the time required to

complete the checkpoint, directly impacting the overall appli-

cation execution duration.



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450
E

la
p

se
d

 t
im

e
 (

s)

8p-ckp-metis

8p-ckp

1p-ckp

no-ckp

Fig. 16. Makespan for YCSB-A.

On the other hand, the makespan for workload YCSB-D

in Fig. 17 demonstrated a low performance. As mentioned,

this workload is challenging for repartitioning algorithms (see

Fig. 8). The imbalance causes one partition to take longer to

execute by the designated thread. In contrast, other checkpoint

threads remain idle, waiting for the completion of the slower

partition. Since the thread responsible for the slower partition

has to process more data to be saved, it highlights the impact

of unbalanced partitions on parallel checkpoints.

 0

 50

 100

 150

 200

 250

 300

E
la

p
se

d
 t

im
e

 (
s)

8p-ckp-metis

8p-ckp

1p-ckp

no-ckp

Fig. 17. Makespan for YCSB-D.

Fig. 18 illustrates a significant improvement in the

makespan for the checkpoint configuration employing the

repartitioning algorithm using the workload YCSB-E. The

observed enhancement is due to a reduction in the number

of synchronization operations, which consequently enables the

process to reach completion more rapidly. This figure corrob-

orates the throughput gains previously depicted in Fig. 5. As

observed, even with checkpointing and repartitioning costs,

our approach overcomes the makespan with a scenario without

checkpointing.

V. CONCLUSION

Parallel checkpointing is particularly advantageous as it

efficiently leverages the capabilities of modern hardware.

 0

 50

 100

 150

 200

 250

E
la

p
se

d
 t

im
e

 (
s)

8p-ckp-metis

8p-ckp

1p-ckp

no-ckp

Fig. 18. Makespan for YCSB-E.

Multiple threads can save state partitions in parallel, reduc-

ing the checkpointing execution time. Besides speeding up

checkpointing through parallelism, our checkpoint procedure

balances the state partitions according to the fluctuations in

the workload experienced by the application.

While repartitioning algorithms can be resource-intensive,

our method deliberately leverages the processing disruption

caused by checkpoints and idle periods during I/O operations.

We utilize these periods to tap into underutilized CPU re-

sources for repartitioning the application state. Our studies

revealed that repartitioning within this timeframe is feasible

without significantly extending the total application execution

time. Also, with repartitioning, requests are balanced among

the partitions, and multi-variable requests become more likely

to involve variables in the same partition, reducing synchro-

nization costs.

We experimentally evaluated the impact on performance

with the proposed approach. In particular, we compared our

approach with a non-partitioned checkpoint and a static par-

titioning version. In workloads dominated by multi-variable

requests, executing the repartitioning demonstrated a perfor-

mance improvement that surpassed even the baseline sce-

nario with no checkpoint execution. It means the benefits

of repartitioning compensated for the costs of checkpointing.

Dynamic repartitioning executed during parallel checkpointing

still demonstrated a compelling performance when testing

unfavorable workloads. Paper results support the intuition that

it is possible to benefit from the idle processing time during

checkpointing for more efficient application state redistribu-

tion.

ACKNOWLEDGMENTS

This work received financial support of the Fundação de

Amparo à Pesquisa e Inovação do Estado de Santa Catarina –

FAPESC and Federal University of Santa Catarina – UFSC.

REFERENCES

[1] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A sur-
vey of rollback-recovery protocols in message-passing systems,” ACM
Computing Surveys (CSUR), vol. 34, no. 3, pp. 375–408, 2002.



[2] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of fault
tolerance mechanisms and checkpoint/restart implementations for high
performance computing systems,” Journal of Supercomputing, vol. 65,
no. 3, pp. 1302–1326, 2013.

[3] O. M. Mendizabal, F. L. Dotti, and F. Pedone, “Analysis of checkpoint-
ing overhead in parallel state machine replication,” in Proceedings of the
31st Annual ACM Symposium on Applied Computing, 2016, pp. 534–
537.

[4] A. Bessani, M. Santos, J. Felix, N. Neves, and M. Correia, “On the
efficiency of durable state machine replication,” in USENIX Annual
Technical Conference (ATC), 2013, pp. 169–180.

[5] F. Z. Boito, E. C. Inacio, J. L. Bez, P. O. A. Navaux, M. A. R. Dantas,
and Y. Denneulin, “A Checkpoint of Research on Parallel I/O for High-
Performance Computing,” ACM Computing Surveys, vol. 51, no. 2, 2018.

[6] C.-G. Lee, H. Byun, S. Noh, H. Kang, and Y. Kim, “Write Optimization
of Log-Structured Flash File System for Parallel I/O on Manycore
Servers,” in Proceedings of the 12th ACM International Conference on
Systems and Storage, 2019, p. 21–32.

[7] J. Nakano, P. Montesinos, K. Gharachorloo, and J. Torrellas, “Re-
ViveI/O: efficient handling of I/O in highly-available rollback-recovery
servers,” in The Twelfth International Symposium on High-Performance
Computer Architecture, 2006., 2006, pp. 200–211.

[8] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: a workload-
driven approach to database replication and partitioning,” Proceedings
of the VLDB Endowment, vol. 3, no. 1-2, pp. 48–57, 2010.

[9] A. Quamar, K. A. Kumar, and A. Deshpande, “Sword: Scalable
workload-aware data placement for transactional workloads,” in
Proceedings of the 16th International Conference on Extending
Database Technology, ser. EDBT ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 430–441. [Online].
Available: https://doi.org/10.1145/2452376.2452427

[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[11] J. Nishimura and J. Ugander, “Restreaming graph partitioning: simple
versatile algorithms for advanced balancing,” in Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and
data mining, 2013, pp. 1106–1114.

[12] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “Fennel:
Streaming graph partitioning for massive scale graphs,” in Proceedings
of the 7th ACM international conference on Web search and data mining,
2014, pp. 333–342.

[13] E. Alchieri, F. Dotti, O. M. Mendizabal, and F. Pedone, “Reconfiguring
parallel state machine replication,” in 2017 IEEE 36th Symposium on
Reliable Distributed Systems (SRDS). IEEE, 2017, pp. 104–113.

[14] L. H. Le, E. Fynn, M. Eslahi-Kelorazi, R. Soulé, and F. Pedone,
“Dynastar: Optimized dynamic partitioning for scalable state machine
replication,” in 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2019, pp. 1453–1465.

[15] G. Yu, X. Wang, K. Yu, W. Ni, J. A. Zhang, and R. P. Liu, “Survey:
Sharding in blockchains,” IEEE Access, vol. 8, pp. 14 155–14 181, 2020.

[16] T. A. Ayall, H. Liu, C. Zhou, A. M. Seid, F. B. Gereme, H. N. Abishu,
and Y. H. Yacob, “Graph computing systems and partitioning techniques:
A survey,” IEEE Access, vol. 10, pp. 118 523–118 550, 2022.

[17] B. Li, W. Xu, and R. Kapitza, “Dynamic state partitioning in parallelized
byzantine fault tolerance,” in 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W),
2018, pp. 158–163.

[18] R. Kotla and M. Dahlin, “High throughput byzantine fault tolerance,” in
International Conference on Dependable Systems and Networks, 2004.
IEEE, 2004, pp. 575–584.

[19] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and M. Dahlin,
“All about eve: Execute-verify replication for multi-core servers,” in
Symposium on Operating Systems Design and Implementation (OSDI),
2012, pp. 237–250.

[20] D. E. Knuth, The Stanford GraphBase: a platform for combinatorial
computing. AcM Press New York, 1993, vol. 1.

[21] H. Goulart, Álvaro Franco, and O. Mendizabal, “Checkpointing tech-
niques in distributed systems: A synopsis of diverse strategies over the
last decades,” in XXIV Workshop de Testes e Tolerância a Falhas, 2023.

[22] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified NP-
complete problems,” in Proceedings of the sixth annual ACM symposium
on Theory of computing, 1974, pp. 47–63.

[23] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on scientific Computing,
vol. 20, no. 1, pp. 359–392, 1998.

[24] P. Sanders and C. Schulz, “Think locally, act globally: Highly balanced
graph partitioning,” in International Symposium on Experimental Algo-
rithms. Springer, 2013, pp. 164–175.

[25] S. T. Barnard and H. D. Simon, “Fast multilevel implementation of
recursive spectral bisection for partitioning unstructured problems,”
Concurrency: Practice and experience, vol. 6, no. 2, pp. 101–117, 1994.

[26] A. Pothen, H. D. Simon, and K.-P. Liou, “Partitioning sparse matrices
with eigenvectors of graphs,” SIAM journal on matrix analysis and
applications, vol. 11, no. 3, pp. 430–452, 1990.


