
Forecasting file lifecycles for intelligent data
placement in hierarchical storage

Adrian KHELILI
Eviden Atos BDS R&D Data Management

Li-PaRAD, UPSaclay-UVSQ, France
adrian.khelili@eviden.com

Sophie ROBERT HAYEK
Eviden Atos BDS R&D Data Management

Echirolles, France

sophie.robert@eviden.com

Soraya ZERTAL
Li-PaRAD, UPSaclay-UVSQ

Guyancourt, France

soraya.zertal@uvsq.fr

Abstract—The increasing disparity between computing speed
and data access latency poses significant challenges in managing
data storage, particularly for massively parallel supercomput-
ers. To address this issue, storage systems have evolved into
hierarchical architectures with different tiers offering varying
performance, cost, and capacity based on specific hardware tech-
nologies. This heterogeneous and hierarchical nature of storage
comes with the need for an optimal data placement strategy.
Existing strategies have primarily approached this problem
from a block perspective, focusing on analyzing application I/O
behavior. However, such approaches fail to capture the contextual
usage of information. To overcome this limitation, considering
file-level usage patterns and adopting a file-centric perspective
for data placement can leverage the context and semantics of
files, leading to more efficient data placement strategies.
This study proposes a novel file-based approach for data place-
ment, focusing on the concept of file re-use and representing files
through their life cycles (FLCs). The FLC of a file captures the
sequence of operations it undergoes during its lifetime, referred
to as FLCevents. By analyzing the time series data associated with
the FLCs of actively used files, our algorithm detects repetitive
patterns of FLCevents to predict future events using pattern
matching and facilitate the anticipation of file movement. This
allows for optimal data placement that aligns with the expected
near-future usage. To validate our approach, we conducted
experiments using traces extracted from representative high-
performance computing (HPC) applications, namely NEMO,
NAMD, LQCD, and an IO-Benchmark. The results we obtained
are highly promising, demonstrating that in term of file prediction
accuracy our proposed F-LRU (File-based Least Recently Used)
achieves from 77% to 55% precision in most difficult scenarios
to 100% for the others. Also, it is at least as effective as
traditional LRU and LFU and can increase the hit rate by a
factor of 1.94 against LFU and of 1.06 against LRU for LQCD
and IO-Bench respectively. These findings highlight the potential
of our approach to significantly enhance hierarchical storage
performance, particularly in HPC environments.

Index Terms—I/O Prediction, File lifecycles, Time Series, Data
temperature, Hierarchical storage, High Performance Computing

I. INTRODUCTION

The growing disparity between computing and storage per-

formance in modern supercomputers is causing severe per-

formance challenges, especially as applications become more

and more data-intensive [1] [15] [19]. Their heavy read and

write operations performed by numerous nodes can strain the

back-end storage, increasing significantly the waiting time of

applications to finish their I/O operations and resume their

computation. This is particularly problematic for applications

and workflows that regularly save their current state through

checkpoints [6], resulting in bursts of writes.

One potential solution to address these I/O bottlenecks is the

use of hierarchical storage, which integrates multiple storage

levels, each with its distinct technologies and physical char-

acteristics. This hierarchy commonly includes RAM, SSD-

NVMe, SSDs, and HDD as backend storage.

While the purpose of this hierarchical storage is to enhance

I/O speed, it presents its own set of challenges, as efficiently

distributing data across the various levels is crucial to decrease

latency in data access. There are two potential approaches to

address this problem: smart eviction strategies whenever tiers

are too full and need to be emptied, and prefetching algorithms

that anticipates the application’s behavior by placing in the

higher tiers data that is most likely to be accessed. These

algorithms range from traditional methods such as LFU [29],

LRU [20] and FIFO [12] to more advanced approaches re-

lying on machine learning. On the other hand, prefetching

techniques [3], [30] consist in proactively loading data that is

likely to be used by the application into higher levels. Most

of these algorithms primarily analyze the application from a

block perspective rather than a file perspective and this single

and fine granularity significantly reduces their predictive capa-

bilities due to the restricted valuable information. By adding a

higher level of abstraction considering a file-based approach,

we have a better understanding of the application behavior and

simplify the tracking, organization, and management of data

during migration between the tiers.

In this work, we suggest switching from a block-only paradigm

to a file-based one, by evicting from the higher tiers blocks

belonging to files that are most likely to be re-used. To perform

this eviction policy efficiently, we introduce the concept of

File Life Cycles Events (FLCevents) to represent the usage

scheme/profile of a file which consists in the series of POSIX

operations performed by a given application on it. We then use

time-series forecasting methods to predict future FLCevents

and rank the files according to their likelihood of being

accessed in the near-future. When a data movement is required

to empty the appropriate tier, we iteratively evict the least

recently used blocks of the file that is predicted to be the less

likely to be re-used.The main contributions of this paper are:

• The proposal of a new paradigm for data placement on

heterogeneous and tierd storage based on the file re-use

property using the concept of FLCevents;

• The proposal of a novel file-based algorithm for time-

series prediction based on pattern matching;

• The proposal of a new eviction policy using this predic-

tion of file access behaviors to rank files according to

how likely they are to be used;

• The application of this policy on three real HPC applica-

tions and one benchmark proving its efficiency compared

to LRU and LFU.

This paper is structured as follow. Section II introduces

works that are similar to ours and highlights the novelty of

our suggestion while section III motivates our choice of using

file-based prediction instead of block-based one. Section IV

presents notations and definitions followed by the methods

used for time series prediction in section V. Section VI

describes the experiments conducted to validate our approach.

Section VII exposes and discusses the obtained results and

section VIII concludes the paper giving some insight into

future works.

II. RELATED WORKS

Several block eviction strategies have been proposed in the

literature for cache management, including simple algorithms

such as Random, LRU [29], LFU [20] and FIFO [12]. More

advanced techniques have also been developed to strike a

better balance between recency and frequency. For example,

LRFU [10] offers a range of policies between LRU and

LFU, while ARC [13] divides the cache into recently and

frequently accessed pages. Additionally, LIRS [16] introduces

the concept of inter-reference recency to enhance efficiency.

Despite the notable effectiveness of these policies, their prac-

tical implementation can be complicated due to the parameter

tuning phase required prior to execution. To address this

challenge, the CAR and CART [4] algorithms have been

proposed, leveraging parameter auto-tuning to automatically

decide which hyperparameter to select. However, both meth-

ods fail to distinguish between data that has been recently

accessed but will not be accessed again and can thus be evicted

from higher tiers and data that will be accessed multiple

times. CART addresses this issue by introducing a temporal

filter, which enables distinguishing between short-term and

long-term accesses, but this policy still doesn’t sufficiently

differentiate between data accessed once and data reused

multiple time. Recent advances in machine learning have led

to the emergence of a new generation of algorithms based on

reinforcement learning techniques. Among these, LeCar [32]

employs a reward function to determine the relative importance

of two policies, LRU and LFU. This algorithm has been ex-

tended in Cacheus [25], which introduces a novel combination

of policies, namely SR-LRU (Scan-resistant LRU) and CR-

LFU (Churn-resistant LFU). Furthermore, Cacheus dynami-

cally adjusts hyperparameters using gradient-based stochastic

hill climbing, enhancing its autotuning capabilities. Despite

the effectiveness of these policies, they are limited in their

ability to optimize systems performance, as they do not take

into account the unique characteristics of each file, as we will

show in section III.

Other data management solutions includes probability mod-

els [22] [33] [28] such as Markov Models (MM) that have

the drawbacks of making the strong assumption that I/O

requests are memory-less, which is not necessarily true in

practice. Grammar based techniques allow the modelization of

I/O behavior [11] to capture characteristics of the program’s

memory access patterns and proactively fetch data into the

cache before it is requested by the processor. Other Machine

Learning techniques such as decision trees have been used to

predict I/O performance [18], [21].

When it comes to the prediction of I/O behavior using time

series methods, [9] uses a time series model to estimate

file system server load and [5] proposes a pattern matching

approach for server-side access pattern detection for the HPC

I/O stack. [31] and [8] use ARIMA models to capture both

temporal and seasonal trends in time series data, making it

a popular choice for predicting I/O performance in various

settings. However, the ARIMA model is complex, compu-

tationally expensive and hard to parallelize, as highlighted

in [34]. Moreover, parameter tuning can significantly affect

prediction performance, making it challenging to achieve be

accurate and reliable.

More generally, generic algorithms for time series prediction

can be leveraged to predict I/O behavior, as they offer a

variety of patterns detection techniques. We can for example

cite the algorithm based on Symbolic Aggregate approXi-

mation (SAX) that converts the original real time serie T

into a sequence of symbols belonging to an alphabet, and

the Piecewise Aggregate Approximation (PAA) [2] which

consists in dividing a time series into fixed-size segments and

approximating each segment with an aggregated value, such

as the mean or the median.

III. MOTIVATION

One of the significant limitations associated with relying

solely on block accesses for data placement is the absence of

contextual information regarding data usage. Unlike blocks,

files at the application level typically represent logical units

of information with inherent relationships and dependencies.

Files can be categorized based on their access type, such as

input files, checkpointing files, result files, and so on. By

considering file-level usage patterns, data placement can take

into account the context and semantics of the files, leveraging

their inherent characteristics and access requirements. By

predicting file usage at the file level, the decisions of file

movements within the different storage tiers can be made much

more efficiently: files which are likely to be accessed in the

future can be prefetched into higher tiers, and symmetrically,

files that are not likely to be accessed again can be evicted to

lower tiers.

For these reasons, this paper focuses on migration policies

at the file level, where blocks are moved to a lower tier on

a per-file basis guided by forecasts of incoming file usage.

Traditional time series modeling approaches like ARIMA,

AR, and MA are often time-consuming and require complex

parameter tuning, making them impractical for production

applications. Moreover, their sensitivity to parameters and

potential placement errors can adversely affect system perfor-

mance. To address these limitations, this study employs pattern

matching algorithms for forecasting file usage, which offer

faster results with limited modeling requirements.

By identifying the most similar pattern to the current activity

that has been observed in the past, we make predictions about

the future activity of each file, assuming that historical patterns

tend to repeat themselves. These predictions enable us to

establish a priority ranking for the files. The file predicted to

exhibit the least activity or deemed less important based on the

observed pattern is then selected for migration to a lower tier

with higher priority. This approach allows us to make informed

decisions about which file to migrate while considering their

predicted future activity, rather than simply relying on recency

or frequency of accesses at the block level.

IV. DEFINITIONS AND NOTATIONS

• Time Serie: A time serie T = (t1, t2, ..., tn) of length n
is a sequence of n real-valued observations, where each

ti represents a value observed at a specific time point.

• Subsequence: Let T be a time series of length n. A

subsequence Si,l is a contiguous time series of length l
with 1 ≤ i ≤ n and 1 ≤ i+ l ≤ n. Specifically, Si,l is

defined as (ti, ti+1, . . . , ti+l−1).
• Trivial Match: Two subsequences Si;l and Sj;l of the

same time serie T overlap if they share at least half of

their common positions in T , where l is the length of the

subsequences. The condition for overlap is that the index

j of the second subsequence should be between i − l/2
and i+ l/2.

• FLC: a temporal series of FLCevents (ot)1≤t≤T per-

formed on a given file, with ot an operation in the POSIX

set {READ, WRITE, OPEN, CLOSE}.
• Pattern: a pattern refers to a recurring subsequence that

repeats at regular intervals in the FLC.

V. METHODS

The main objective of our approach is to anticipate the

appropriate data placement on the tiers by establishing a

priority files ranking based on their likelihood of being reused

or not in the near future. By accurately predicting file usage

patterns, a priority ranking of files can be established at

runtime. This ranking guides the decision-making process that

determine which files to evict first from the higher tiers of the

hierarchical storage.

A. Time serie modeling

For each File Life Cycle (FLC), we apply a binarization

which is a common technique used to enhance predictions,

as displayed in figure 1. It involves dividing the time serie

into fixed-sized intervals, reducing the data variability. The bin

size, denoted as w, serves as an algorithm hyper-parameter and

determines the width of these intervals. By carefully selecting

an appropriate bin size, we can gain a better understanding

of the time serie and achieve more accurate predictions. This

binarization divides the time series into a set of bins denoted

I = I1, I2, . . . , In, where Ii represents the ith interval of the

life cycle. The total number of bins, n, is determined by the

ratio between the total duration of the application and the bin

size. Function f counts the number of requests within interval i
and f(Ii) represents the file access frequency at each interval i,
calculated for READ and for WRITE operations. The life cycle

is then converted to a time serie, associating the number of

requests to a temporal interval of the life cycle. The analyzed

time serie can be denoted T = {f(I1), f(I2), . . . , f(In)}

Fig. 1: Conversion of FLC into binned time serie

B. Tested distances

In KNN regression, a distance is a measure of similarity

between two time series sub-sequences. We choose to focus

on the Euclidean distance for its computational advantages

instead of Dynamic Time Warping (DTW) []

Dynamic Time Warping measures the similarity between two

temporal sequences, even when they have different lengths

or exhibit temporal distortions, as it searches for the opti-

mal alignment between the two sequences by warping and

stretching them in the time dimension. A distance measure is

computed between the two sequences by creating a matrix

that represents the accumulated cost of aligning each pair

of elements in the sequences. The elements of this matrix

correspond to the partial alignments of the sequences at

different time points.

The formula for computing the DTW distance between two

sequences X and Y of lengths n and m respectively is as

follows:

DTW(X,Y) =

√√√√
n∑

i=1

m∑
j=1

d(xi, yj)

where d(xi, yj) is the local distance measure between

elements xi and yj in the sequences X and Y respectively.

We use here the Euclidean distance.

The DTW algorithm then finds the optimal alignment by

iteratively computing the accumulated cost matrix and back-

tracking through it to determine the optimal path. The resulting

optimal path represents the alignment between the sequences.

C. Suggested eviction algorithm

When applied to FLC prediction, this pattern matching

algorithm leverages the assumption that by identifying the

most similar observed FLCevents patterns, we can predict the

future behavior of the application at the file level, assumption

validated by works on the periodicity of HPC applications [27]

[14]. The FLC timeseries is then browsed with a sliding

time window that moves through the timeseries and examines

subsequences, as displayed in figure 2. This window should

not be confused with the binning window w mentioned

earlier. It corresponds to the pattern containing h windows

w. The distance calculation function is a callback parameter

dist to test both the DTW (Dynamic Time Warping) and

ED (Euclidean Distance) calculation algorithms. Once the

best matching pattern is found, it serves as the basis for

prediction as described in algorithm 1. We can thus predict

how the file will behave in the future based on its historical

observed patterns and anticipate data placement according to

the predicted behavior.

Fig. 2: Schematic representation of file prediction process

Once the file with the least likelihood of being reused

selected, it is also necessary to choose the specific blocks to be

evicted within that file. The blocks will be evicted in the LRU

(Least Recently Used) order, meaning that the least recently

accessed blocks within the file will be evicted first. Our aim is

just to free enough room in the tier to achieve our anticipation

and load its corresponding data. As the prior file for eviction

is also in use (even with the lowest reuse score), we adopt a

conservative strategy and we evict only blocks to free enough

space for potential data to be accessed in the future according

to our prediction.

D. Complexity

Let m be the number of manipulated files, p the number of

patterns, FLC the file lifecycle time serie, and n = |FLC|,
where |FLC| denotes the cardinality of FLC in terms of

number of windows w. The complexity of this algorithm is

O(n×m× p) when the selected distance metric is euclidean

and O(n2×m×p) in the case of DTW metric. There is an op-

timized version of the DTW algorithm that uses a subsampling

strategy to reduce the time complexity to O(n×log (n)×m×p)
at the cost of a slight loss in precision due to the resolution

reduction. Despite that faster computation time, we adopted

the original DTW distance rather than fast DTW for the sake

of precision. Additionally, our solution is highly parallelizable

since the files behaviors are independently predicted and the

comparison between patterns are independently computed.

This means that a subset of opened files can be considered

by our prediction in parallel (subject to the number of cores,

parallel execution strategy, etc), which will be an important

feature when porting our work to production.

VI. VALIDATION

We evaluated our data management propositon to a Burst

Buffer IO-accelerator with a heterogenous hierarchical storage

that will be detailed further in this section. We organize the

validation of our prediction strategy based on pattern matching

coupled with a file-based management policy of the tiered

storage in two steps: we first validate the quality of the file

re-use prediction ranking by running the prediction algorithm

every 10 bins, and evaluate the prediction once the actual

data, which will act as a ground truth, is available. In the

second phase, we evaluate and compare the performance of

our eviction policy with standard policies. To measure the

effectiveness of our policy, we utilize representative metrics

such as the hit ratio. By comparing the hit ratio of our eviction

policy to that of standard policies, we can assess the efficiency

and effectiveness of our approach.

A. Selected applications

Four applications have been selected to evaluate the per-

formance of our algorithm: three HPC applications and a

synthetic I/O benchmark. A summary of the I/O behavior in

terms of file manipulation of each application is available in

table I.

1) NAMD:
NAMD [24] is a parallel molecular dynamics code designed

for high-performance simulation of large bio-molecular sys-

tems. It has the particularity of being very dependent on the

storage hardware, due to its large I/O bursts, and is thus a

good use-case.

For our experiment, we use the Satellite Tobacco Mosaic

Virus (STMV-28M) configuration. This is a 3x3x3 replication

of the original STMV dataset from the official NAMD site,

containing roughly 28 million atoms.

NAMD execution goes through 50 steps corresponding to

the number of simulation time steps to achieve. Another

parameter defines the number of steps after which a checkpoint

is performed that is set to 5 to obtain ten checkpoints per run

for a significant I/O activity. In this configuration, a total of

2 GB of data is read and 5 GB of data is written, resulting

in a total of 10226 read operations and 1079 write operations.

These operations involve a total of 14 files, 10 of which are

heavily re-used.

2) NEMO: NEMO [26] (Nucleus for European Modeling
of the Ocean) is a state-of-the-art modeling framework for

research activities in ocean and climate sciences. It is charac-

terized by a significant file re-use, highlighting the importance

of a custom file placement policy in the hierarchical storage

Algorithm 1 Pattern matching algorithm with time series prediction

Require: time series, h, dist
1: procedure PATTERNMATCHINGPREDICTION(time series, h)

2: current pattern← get curr pattern(time series, h) � Get the current pattern of sizeh
3: closest pattern← None

4: min distance←∞
5: for i← 0 to len(time serie)− h− 1 do
6: pattern← time serie[i : i+ h] � Extract the pattern

7: distance← dist(current pattern, pattern) � Calculate the distance

8: if distance < min distance then
9: min distance← distance

10: closest pattern← pattern

11: prediction← predict from pattern(closest pattern) � Predict from closest pattern

12: return prediction � Return the prediction

to keep the most accessed files in the most efficient level.

Additionally, we can see that NEMO constantly manipulates

a certain number of files, whether in read or write mode, which

offers rich patterns for both READ and WRITE operations. It

presents a higher activity in reading at the beginning of the

application and a higher activity in writing at the end of the

application, which is explained by the reading of input files at

the beginning and the writing of output files at the end of the

application.

For our experiment, we use the GYRE configuration, which

simulates the seasonal cycle of a double-gyre box model, and

which is often used for I/O benchmarking purpose as it is

very simple to increase grid resolution and does not require

any input file. In our case, the grid resolution is set to 5 and the

number of MPI processes to 32 to increase the I/O activity. In

this configuration, a total of 65 GB of data is read and 50 GB

of data is written, resulting in a total of 17,816 read operations

and 17,816 write operations. These operations involve a total

of 184 files, among which 21 are heavily reused.

3) LQCD: Lattice QCD is a well-established non-

perturbative approach for solving the quantum chromodynam-

ics (QCD) theory of quarks and gluons. It is a lattice gauge

theory formulated on a grid or lattice of points in space and

time. When the size of the lattice is taken infinitely large and

its sites infinitesimally close to each other, the continuum QCD

is recovered [7].

In this lattice quantum chromodynamics (LQCD) simulation,

the parameters are set as follows: the quark mass (qmass)

which represents the mass of the quark is set to 0.02, and the

gauge coupling strength (beta) which represents the strength

of the interactions between quarks and gluons in the lattice

simulation is set to 0.2. The simulation is performed with a

spatial extent of 16 lattice units and a temporal extent of 36

lattice units. The simulation is divided into a total of 8 tasks in

the temporal direction, 4 tasks in the spatial direction, 4 tasks

in the y-direction, and 4 tasks in the x-direction, resulting in

a total of 512 tasks.

In this configuration, a total of 27 GB of data is read and 40

GB of data is written, resulting in a total of 1673538 read

operations and 3335740 write operations. These operations

involve a total of 284 files, among which 21 are heavily reused.

4) Benchmarking application: We design this synthetic

application using a generic benchmarking I/O tool in such a

way that the read phases gradually lengthen, as can be seen in

figure 8. Except for the beginning and end of the application,

the activity in write in relatively low as shown in figure 7. In

this configuration, a total of 42 GB of data is read and 1 GB

of data is written, resulting in a total of 36137 read operations

and 1240 write operations. These operations involve a total of

9 files and all of them are heavily reused. We have chosen

this specific bench to visually demonstrate the difference in

patterns when they expand, compare the effectiveness of DTW

and ED as distance metrics, and observe a profile characterized

by significant file reuse.

B. Evaluation metrics

To evaluate the performance of our prediction algorithms,

we calculate standard multi-class supervised learning met-

rics in Machine Learning: accuracy, precision, and MCC for

Matthews Correlation Coefficient [5]. We subdivide the order

of file prediction into four quartiles, and treat each of these as

a specific category. We define for each quartile:

• True Positives (TP) : number of correctly predicted in-

stances for a specific quartile

• True Negatives (TN): number of correctly predicted in-

stances for all other classes excluding the specific quartile

• False Positives (FP) : number of incorrectly predicted

instances as the specific class

• False Negatives (FN) : number of instances belonging

to the specific class but incorrectly predicted as other

classes.

the different metrics are calculated and averaged for quar-

tile:

• Accuracy = 1
4 ×

∑4
i=1

TPi+TNi

TPi+FPi+FNi+TNi

• Precision = 1
4 ×

∑4
i=1

TPi

TPi+FPi

• MCC =
1
4 ×

∑4
i=1

TPi·TNi−FPi·FNi√
(TPi+FPi)(TPi+FNi)(TNi+FPi)(TNi+FNi)

TABLE I: I/O behavior of the four applications

Application Total files File re-used Number of read Number of write READ volume (Gb) WRITE volume (Gb)
NEMO 184 21 17816 12867 65 50
NAMD 14 1¡0 1226 1079 2 5
LQCD 284 121 1673538 3335740 27 40

BENCH 9 9 36137 1240 42 1

For example, an Accuracy of 100% means that every file

was predicted in its right quartile. We check the quality of our

prediction via these metrics each w × 10ns, then average the

results over the whole application execution.

We also consider the data placement management quality

by considering the hit ratio at the first tier (the one with the

lowest access latency) for each application and compare it to

three of the most popular cache management algorithms: LRU,

LFU, F-LRU.

C. Tested hyperparameters

Our prediction also requires several hyperparameters. One

of these hyperparameters is the window size (w), which is

used to determine the number of IO requests to consider when

creating the time serie. The window size determines the granu-

larity of the time serie, i.e., the frequency at which FLCevents

are aggregated to form the observation points where each

observation f(In) refers to the number of FLCevents made

within that specific interval In. The length of the subsequence

that describes the pattern is also a hyperparameter. The num-

ber of predicted values is denoted by the horizon (h). We

select for our experimentation campaign a value of 40 as

a trade-off between the quality of the prediction (the closer

the prediction the easier it is to predict accurately) and the

number of predicted points (the more information we have, the

more efficiently we can predict data placement). The window

size (w) corresponds to the width of the pooling interval to

transform: in production, it should be carefully chosen based

on the shape of the bursts of the application, as it impacts the

shape of the timeseries and subsequently affects the quality

of predictions. For this work, we select (w) based on the

execution time of the policy, to have 1000 data point in total

within the time series. The value is then rounded to the nearest

power of 10. A summary of tested hyperparameters is available

in table II.

TABLE II: Tested hyperparameters per application

Application h w
LQCD 40 10 000 000
NEMO 40 1 000 000
NAMD 40 100 000

Synthetic App 40 100 000

D. Hardware and software

To capture their I/O behavior, each application is run on a

single compute node, with 134GiB memory, an AMD EPYC

7H12 processor with 64 cores.

Our selected particular use-case of hierarchical storage is a

burst buffer, a fast intermediate layer located between compute

nodes and the slower backend storage, as displayed in figure 3.

Their purpose is to allocate a temporary cache positioned

between the computing processes and the permanent storage

system. Burst of I/O can be redirected to this high bandwidth

cache to avoid I/O bottlenecks during intensive I/O phases,

such as checkpointing phases. The burst buffer absorbs burst

of I/O and asynchronously performs the I/O on the permanent

storage backend to reduce the job’s stalling time and accelerate

its execution. In our particular implementation, two layers of

intermediate faster storage are available: RAM and NVME.

We have selected three different setups in terms of NVME

and RAM size, as described in table III.

TABLE III: Selected hierarchical storage characteristics for

our experiments

Setup RAM (Level 1) Size NVME (Level 2) Size
1 1 GB 5 GB
2 10 GB 50 GB
3 100 GB 500 GB

Fig. 3: Burst Buffer architecture

The FLC of each application is extracted using the FiLiP

software, presented by Khelili and al. in [17], which allows

us to extract on a file-per-file basis the type of each operation

and its timestamp, as shown in listing 1.

E. Implementation

For quick simulation and comparison of our data movement

policy to the state of the art, we have developed a simula-

tor that processes requests as they arrive and simulates the

execution of the eviction policy. We implemented LRU and

LFU in their most optimal version, O(1), for all operations

to allow fast experimentations. Our file-based eviction policy

Listing 1: Example of FileLifecycle

” f i l e 1 ” : [
{
” t imes t amp ” : 4096 ,
” t y p e ” : ”WRITE”
} ,
{
” t imes t amp ” : 4098 ,
” t y p e ” : ”READ”
} ,

]

Fig. 4: File-based eviction data structure

also required the creation of a specific data structure to achieve

O(1) execution for all operations.

Our data structure figure 4 is built upon the foundation of

the LRU data structure (in black), incorporating a combination

of a linked list and a hash map. This design allows an

efficient insertion, deletion, and update operations with optimal

time complexity. The linked list component is responsible for

organizing the blocks based on their recent usage. It maintains

the order of blocks, placing the most recently accessed block

at the front of the list and the least recently accessed block

at the back. This arrangement ensures that the migration of

the least recently used blocks to a lower storage tier can be

performed in constant time by simply removing it from the

tail of the linked list.

To further enhance our file-level policy, we recognized that

updating and deleting blocks belonging to the same file might

result in a time complexity of O(n), where n represents the

number of blocks. To address this concern, we introduced an

additional level (green links) of the linked list that connects

blocks belonging to the same file. This allows us to efficiently

update or delete blocks associated with a specific file by

traversing only the linked list related to that file, resulting in

improved performance. The simulator takes as input the files

lifecycles of an application, and returns the number of hits for

the different tested policies.

The capacity of every tier of the hierarchical storage configu-

ration can be adjusted, as well as the block size.

VII. RESULTS AND DISCUSSION

Figures 5 and 6 represent the FLC’s of the three studied

scientific applications. Each color in these figures represents

a different FLC. In these figures, each color represents the

FLC of a specific file and for each application we observe its

prediction quality using accuracy, precision, and MCC metrics.

A. NAMD

The results on table IV show 100% accuracy on read

operations prediction corresponding to a perfect prediction.

The prediction accuracy is lower for writing operations com-

pared to reading ones because the read activity is consistently

low for the majority of the time with 2Gb of read data

concentrated at the beginning of the application and no activity

after that making it more predictable compared to the write

activity. As shown in figure 5, after an initial reading phase

corresponding to the application launch, the files are negligibly

reused in subsequent reads. In the case of write operations, the

profile exhibits higher levels of activity with 5Gb distributed

throughout the entire execution of the application, presenting

a greater challenge for accurate prediction. However, the

accuracy remains relatively high, reaching 81% because of

the contextual nature of file access. The files are accessed in

a specific context, such as being used as input or output files,

or being accessed periodically as can be seen in the same

figure 6b: there are recurring peaks for the brown-colored file,

indicating regular access. Additionally, the yellow file shows a

single access towards the end of the execution corresponding

to the results write.

TABLE IV: NAMD evaluation

NAMD
Metrics Accuracy Precision MCC

R
E

A
D Euclidean distance 100 % 100 % 100 %

DTW distance 100% 100 % 100%

W
R

IT
E Euclidean distance 81% 60 % 61%

DTW distance 81 % 60 % 61 %

B. NEMO

The results in tables V show that NEMO’s I/O patterns can

be predicted with a good accuracy 77% on READ and 68% on

write using both Euclidean and DTW distances. This quality

of prediction correlation is likely due to the fact that NEMO is

a data-intensive application that frequently accesses the same

data files in a similar way.

In the case of WRITE operations, the accuracy, precision,

and MCC are slightly better with the Euclidian distance despite

its lower calculation time. The fact that the Euclidean distance

produces better results than DTW suggests that the patterns do

not undergo significant expansion or contraction that would

provide an advantage to DTW. The results also highlight the

importance of custom file placement policies for applications

like NEMO, where file reuse is a significant factor. The

predicted I/O patterns can be used to inform file placement

decisions, such as placing frequently accessed files in the

(a) NEMO READ Behavior (b) NAMD READ Behavior.

(c) LQCD READ Behavior.

.

Fig. 5: FLC for each application filtered by read FLCevents. Each color represents a manipulated file.

(a) NEMO WRITE Behavior (b) NAMD WRITE Behavior (c) LQCD WRITE Behavior

Fig. 6: FLC for each application filtered by write FLCevents

most efficient storage level using data pre-fetching or data

eviction. Overall, the high prediction accuracy and the insights

gained from analyzing NEMO’s I/O patterns provide valuable

information for improving the performance.

TABLE V: Nemo evaluation

NEMO
Metrics Accuracy Precision MCC

R
E

A
D Euclidean distance 77 % 53% 60%

DTW distance 77 % 53% 60%

W
R

IT
E Euclidean distance 68% 36 % 44%

DTW distance 66% 33 % 41%

C. LQCD

Unlike NAMD, the activity in this case is almost similar for

read (65GB) and write (50GB) operations, and they are both

evenly distributed throughout the application execution . The

results table VI shows that the prediction is relatively high in

READ and WRITE operations with an accuracy reaching 96%

for WRITE cases and 96% for READ cases, with a MCC of

93% . In the case of WRITE prediction,we can see that DTW

performs slightly better than ED in terms of accuracy and

precision, indicating that the patterns vary slightly during the

execution of the application. While it may not be completely

evident by observing figure 8, we can hypothesize that this

difference is related to a narrowing/widening of patterns over

time.

TABLE VI: LQCD evaluation

LQCD
Metrics Accuracy Precision MCC

R
E

A
D Euclidean distance 96 % 92 % 93%

DTW distance 96% 92 % 93%

W
R

IT
E Euclidean distance 95% 91 % 93%

DTW distance 96 % 92 % 93%

D. Synthetic Benchmark

In terms of appplication profile, this case is inversely

similar to NAMD. In this case, the read operations exhibit

high and evenly distributed activity (42GB), while the write

operations have low activity (1GB) only at the beginning of

the application. In the figure 7 representing the FLC’s filtered

by READ, we can see that files represented by different

colors exhibit patterns that widen over time. This observation

suggests that the behavior of files varies or evolves as they

are used. When I/O phases expand or contract as shown in

figure 7, the DTW distance surpasses the Euclidean distance

(ED) with a 86% accuracy against 84% for the ED and 73%

againt 71% for precision, because it is designed to adapt to

such patterns, making it more suitable for scenarios where

I/O phases vary in length. Its ability to align and compare

sequences with varying lengths allows it to capture temporal

variations more effectively than the Euclidean distance. This

adaptability makes DTW a preferred choice when dealing

with time series data that exhibit variable patterns or temporal

shifts.

TABLE VII: Benchmarking App evaluation

Benchmarking App
Metrics Accuracy Precision MCC

R
E

A
D Euclidean distance 84 % 71% 75%

DTW distance 86% 73 % 77%

W
R

IT
E Euclidean distance 100 % 100% 100%

DTW distance 100% 100 % 100%

Fig. 7: FLC’s of the synthetic application filtered by read

FLC Events. Each color represents a manipulated file.

E. Prediction time

In figure 9, we highlight the difference in execution time be-

tween the different algorithms, and we can observe that in both

cases of Euclidean distance and DTW, the execution remains

lower than ARIMA. It is worth noting that the execution times

of the differentiation algorithms, required when using ARIMA

in the case of non-stationary time serie are not included in

these recorded times. Comparing our performance to existing

methods in figure 9, we can see that our algorithm is faster than

the reference time serie prediction method (ARIMA) on figure

9. Additionally, using the Euclidean distance metric reduces

the execution time significantly compared to using the DTW

distance metric. Because our window has a fixed size, we see

no major improvement in performance between DTW and ED,

Fig. 8: FLC’s of the synthetic application filtered by write

FLC Events. Each color represents a manipulated file.

and we recommend using ED for speed gain when the window

has a fixed size.

Fig. 9: Execution time of the algorithm as a function of the

size of the time serie

F. Hit ratio and anticipated data placement

We compare here the hit ratio on the highest level of

the storage hierarchy of the Burst Buffer using our File-

based migration strategy (F-LRU) against the literature cache

eviction policies: LRU and LFU. All of them were simulated

using our developed tool.

We considered the three scenarios as detailed in table III

with three different setups for the hierarchy of the Burst Buffer.

We run the simulation using as input the traces generated by

the four aforementioned applications. For comparison purpose,

we generated a baseline scenario where the capacity of the

highest tier is large enough to capture all the references. So, the

fit ratio is the maximum and reaches its upper bound of each

application under the assumption of an infinite highest tier. We

normalize the number of hits on each tier by this maximum

number of hits to obtain the percentage of successful hits out

of the possible hits in an ideal configuration with an infinite

first tier.
1) First Scenario: We can see on table VIII that the number

of hits is improved using our policy for both NEMO and the

synthetic benchmark application we developed. Specifically

for NEMO, our File-based policy (F-LRU) outperforms both

LRU and LFU with a better hit rate at the highest level of the

hierarchy with the lowest latency. Note that, LFU performs

better than LRU for the case of NEMO but conversely LRU

takes the advantage in the case of NAMD. This is justified

by the fact that in such a setup, recently accessed blocks are

more reused than frequently ones for NAMD and vice versa

for NEMO.

We observe also that the suitability of LRU or LFU is more

dependent of the application whereas our policy remains stable

and offers a better hit rate for both NEMO and Bench. This

is because it does not consider only the blocks recency or

frequency, but also the higher level via file reuse property

which gives more information on the contextual usage of the

file.

TABLE VIII: First setup hit comparison to LRU and LFU

Policies
Levels LRU LFU F-LRU

NEMO
level1 41% 43% 47%
level2 57% 54% 52%

LQCD
level1 41% 41% 41%
level2 0% 0% 0%

NAMD
level1 87% 88% 87%
level2 12% 11% 12%

BENCH
level1 0% 0% 0%
level2 0% 0% 4%

2) Second scenario: This scenario corresponds to a larger

capacity for both the two highest tiers of the burst Buffer to

represent a configuration with less restrictions on resources

compared to the first scenario. In this case, we can observe

a significant change for NEMO which idealy performs for

the three policies because the capacity of the highest tier

is large enough to accommodate more data, resulting in a

higher hit rate (98% to 99%). On the contrary, for LQCD,

we observe that LRU and F-LRU, with a hit rate of 97%,

outperform LFU, which has a hit rate of only 50% because in

this setup LQCD recently accessed blocks are more reaccessed

than frequently ones. Regarding NAMD, all its data fit in the

highest tier leading to a 100% hit rate. Finally, for the synthetic

benchmark, our F-LRU policy performs better than the other

two ones with a hit rate of 75% against 71% for LRU and

LFU respectively. So, F-LRU performs at least as well as the

best of LRU and LFU for all applications.
3) Third scenario: This scenario represents a configuration

almost without restrictions on resources as the tiers storage

TABLE IX: Second setup hit comparison to LRU and LFU

Policies
Levels LRU LFU F-LRU

NEMO
level1 99% 98% 99%
level2 1% 2% 1%

LQCD
level1 97% 50% 97%
level2 31% 49% 31%

NAMD
level1 100% 100% 100%
level2 0% 0% 0%

BENCH
level1 71% 71% 75%
level2 28% 28% 24%

capacities are significantly larger than the precedent scenarios.

Consequently, the highest tier can capture all the IO traffic

rising its hit rate to 100% and No data migration is needed.

TABLE X: Third setup hit comparison to LRU and LFU

Policies
Levels LRU LFU F-LRU

NEMO
level1 100% 100% 100%
level2 0% 0% 0%

LQCD
level1 100% 100% 100%
level2 0% 0% 0%

NAMD
level1 100% 100% 100%
level2 0% 0% 0%

BENCH
level1 100% 100% 100%
level2 0% 0% 0%

VIII. CONCLUSION AND FURTHER WORKS

The file-based approach shows great promise in accurately

predicting I/O patterns, especially in terms of anticipating file

reuse probabilities: we have shown that in terms of accuracy,

the file-based approach achieves result ranging from 77%

accuracy and 53% precision in the most difficult scenarios,

to a perfect 100% accuracy and precision in cases where file

behavior is easier to predict. Whenever comparing cache hits,

the results we obtained are promising, demonstrating that our

proposed F-LRU (File-based Least Recently Used) is at least

as effective as traditional LRU and LFU and can increase the

hit rate by a factor of 1.94 against LFU and 1.06 against LRU

for LQCD and IO-Bench respectively.

The experimental evaluation results demonstrate that our al-

gorithm achieves high prediction accuracy for file-level I/O

patterns compared to existing techniques. Additionally, the

algorithm’s complexity is competitive with state-of-the-art

methods, making it a practical and efficient solution for real-

world scenarios.

In the near future, we plan to merge the patterns from different

files, and calculate the weighted average of the nearest neigh-

bors, which has been shown to yield interesting results in the

literature [23] and can improve the data placement. We also

want to consider inter-file and intra-file comparisons rather

than only intra-file to obtain better prediction. The desired

effect is to capture the inter-files similarity and thus improve

prediction accuracy.

REFERENCES

[1] Daniel A. Reed and Jack Dongarra. Exascale computing and big data.
In Communications of the ACM, volume 58, pages 56–68, 2015. DOI :
10.1145/2699414.

[2] Zaher Al Aghbari and Ayoub Al-Hamadi. Finding k most significant
motifs in big time series data. Procedia Computer Science, 170:595–
601, 2020. DOI: 10.1016/j.procs.2020.03.131.

[3] Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ran-
ganathan. Classifying memory access patterns for prefetching. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
513–526, 2020. DOI: 10.1145/3373376.3378498.

[4] Sorav Bansal and Dharmendra S Modha. CAR: Clock with Adaptive
Replacement. FAST ’04: Proceedings of the 3rd USENIX Conference
on File and Storage Technologies, page 15, 2004.

[5] Francieli Zanon Boito, Ramon Nou, Laércio Lima Pilla, Jean Luca Bez,
Jean-François Méhaut, Toni Cortes, and Philippe OA Navaux. On server-
side file access pattern matching. In 2019 International Conference on
High Performance Computing & Simulation (HPCS), pages 217–224.
IEEE, 2019. DOI:10.1109/HPCS48598.2019.9188092.

[6] Franck Cappello, Al Geist, Bill Gropp, Laxmikant Kalé, Bill Kramer,
and Marc Snir. Toward exascale resilience. In IJHPCA, volume 23,
pages 374–388, 2009. DOI : 10.1177/1094342009347767.

[7] Christine TH Davies, E Follana, A Gray, GP Lepage, Q Mason,
M Nobes, J Shigemitsu, HD Trottier, M Wingate, C Aubin, et al. High-
precision lattice qcd confronts experiment. Physical Review Letters,
92(2):022001, 2004. DOI :10.1103/PhysRevLett.92.022001.

[8] K Lalitha Devi and S Valli. Time series-based workload prediction
using the statistical hybrid model for the cloud environment. Computing,
105(2):353–374, 2023. DOI: 10.1007/s00607-022-01129-7.

[9] Bin Dong, Xiuqiao Li, Qimeng Wu, Limin Xiao, and Li Ruan. A dy-
namic and adaptive load balancing strategy for parallel file system with
large-scale i/o servers. Journal of Parallel and distributed computing,
72(10):1254–1268, 2012. DOI: 10.1016/j.jpdc.2012.05.006.

[10] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, S.H. Noh, Sang Lyul Min,
Yookun Cho, and Chong Sang Kim. LRFU: a spectrum of policies that
subsumes the least recently used and least frequently used policies. IEEE
Transactions on Computers, 50(12):1352–1361, December 2001. DOI:
10.1109/TC.2001.970573.

[11] Matthieu Dorier, Shadi Ibrahim, Gabriel Antoniu, and Rob Ross. Om-
nisc’io: a grammar-based approach to spatial and temporal i/o patterns
prediction. In SC’14: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages
623–634. IEEE, 2014. DOI :10.1109/SC.2014.56.

[12] Ohad Eytan, Danny Harnik, Effi Ofer, and Roy Friedman. It’s Time to
Revisit LRU vs. FIFO. HotStorage’20: Proceedings of the 12th USENIX
Conference on Hot Topics in Storage and File System, page 7, 2020.

[13] San Francisco. Proceedings of FAST ’03: 2nd USENIX Conference on
File and Storage Technologies. Adaptive Replacement Cache (ARC),
page 17, 2023.

[14] Felix Freitag, Julita Corbalan, and Jesus Labarta. A dynamic periodicity
detector: Application to speedup computation. In Proceedings 15th
International Parallel and Distributed Processing Symposium. IPDPS
2001, pages 6–pp. IEEE, 2001. DOI: DOI:10.1109/IPDPS.2001.924928.

[15] Al Geist and Robert Lucas. Major computer science challenges at
exascale. The International Journal of High Performance Computing
Applications, 23(4):427–436, 2009. DOI: 10.1177/1094342009347445.

[16] Song Jiang and Xiaodong Zhang. LIRS: An Efficient Low Inter-
reference Recency Set Replacement Policy to Improve Buffer Cache
Performance. ACM SIGMETRICS Performance Evaluation Review,
page 12, 2002. DOI: 10.1145/511399.511340.

[17] Adrian Khelili, Sophie Robert, and Soraya Zertal. Filip: A file lifecycle-
based profiler for hierarchical storage. INFOCOMMUNICATIONS
JOURNAL, 14(4):26–33, 2022. DOI: 10.36244/ICJ.2022.4.4.

[18] Julian Kunkel, Michaela Zimmer, and Eugen Betke. Predicting per-
formance of non-contiguous i/o with machine learning. In High
Performance Computing: 30th International Conference, ISC High Per-
formance 2015, Frankfurt, Germany, July 12-16, 2015, Proceedings 30,
pages 257–273. Springer, 2015. DOI: 10.1007/978-3-319-20119-1 19.

[19] Jay Lofstead, Ivo Jimenez, Carlos Maltzahn, Quincey Koziol, John Bent,
and Eric Barton. Daos and friends: a proposal for an exascale storage
system. In SC’16: Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, pages 585–
596. IEEE, 2016. DOI: 10.1109/SC.2016.49.

[20] Dhruv Matani, Ketan Shah, and Anirban Mitra. An O(1) algo-
rithm for implementing the LFU cache eviction scheme. Tech-
nical Report arXiv:2110.11602, arXiv, October 2021. DOI:
10.48550/arXiv.2110.11602.

[21] Ryan McKenna, Stephen Herbein, Adam Moody, Todd Gamblin, and
Michela Taufer. Machine learning predictions of runtime and io
traffic on high-end clusters. In 2016 IEEE International Confer-
ence on Cluster Computing (CLUSTER), pages 255–258. IEEE, 2016.
DOI:10.1109/CLUSTER.2016.58.

[22] James Oly and Daniel A Reed. Markov model prediction of i/o
requests for scientific applications. In Proceedings of the 16th inter-
national conference on Supercomputing, pages 147–155, 2002. DOI:
10.1145/514191.514214.

[23] R Keith Oswald, William T Scherer, and Brian L Smith. Traffic
flow forecasting using approximate nearest neighbor nonparametric
regression. Technical report, 2000.

[24] J. C. Phillips, D. J. Hardy, J. D. C. Maia, J. E. Stone, J. V. Ribeiro,
R. C. Bernardi, R. Buch, G. Fiorin, J. Henin, W. Jiang, R. McGreevy,
M. C. R. Melo, B. K. Radak, R. D. Skeel, A. Singharoy, Y. Wang,
B. Roux, A. Aksimentiev, Z. Luthey-Schulten, L. V. Kale, K. Schulten,
C. Chipot, and E. Tajkhorshid. Scalable molecular dynamics on CPU
and GPU architectures with NAMD. Journal of Chemical Physics, 2020.
DOI : 10.1063/5.0014475.

[25] Liana V Rodriguez, Farzana Yusuf, Steven Lyons, Eysler Paz, Raju Ran-
gaswami, Jason Liu, and Giri Narasimhan. Learning Cache Replacement
with Cacheus. FAST ’21, page 15, 2021.

[26] F. Sevault, S. Somot, and J. Beuvier. A regional version of the NEMO
ocean engine on the Mediterranean Sea: NEMOMED8 user’s guide.
Technical report, Meteo-France, CNRM, 2009.

[27] Mathieu Stoffel, François Broquedis, Frédéric Desprez, and Abdelhafid
Mazouz. Phase-ta: Periodicity detection and characterization for hpc
applications. In HPCS 2020-18th IEEE International Conference on
High Performance Computing and Simulation, pages 1–12. IEEE, 2021.

[28] Pradeep Subedi, Philip Davis, Shaohua Duan, Scott Klasky, Hemanth
Kolla, and Manish Parashar. Stacker: an autonomic data movement
engine for extreme-scale data staging-based in-situ workflows. In SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 920–930. IEEE, 2018.

[29] Andrew S. Tanenbaum. Modern operating systems. Pearson, Boston,
fourth edition edition, 2015.

[30] Houjun Tang, Xiaocheng Zou, John Jenkins, David A Boyuka, Stephen
Ranshous, Dries Kimpe, Scott Klasky, and Nagiza F Samatova. Improv-
ing read performance with online access pattern analysis and prefetching.
In Euro-Par 2014 Parallel Processing: 20th International Conference,
Porto, Portugal, August 25-29, 2014. Proceedings 20, pages 246–257.
Springer, 2014. DOI : 10.1007/978-3-319-09873-9 21.

[31] Nancy Tran and Daniel A Reed. Arima time series modeling and
forecasting for adaptive i/o prefetching. In Proceedings of the 15th
international conference on Supercomputing, pages 473–485, 2001.
DOI: 10.1145/377792.377905.

[32] Giuseppe Vietri, Liana V Rodriguez, Wendy A Martinez, Steven Lyons,
Jason Liu, Raju Rangaswami, Ming Zhao, and Giri Narasimhan. Driving
Cache Replacement with ML-based LeCaR. HotStorage’18: Proceed-
ings of the 10th USENIX Conference on Hot Topics in Storage and File
Systems, page 6, 2018.

[33] Lipeng Wan, Matthew Wolf, Feiyi Wang, Jong Youl Choi, George
Ostrouchov, and Scott Klasky. Analysis and modeling of the end-
to-end i/o performance on olcf’s titan supercomputer. In 2017 IEEE
19th International Conference on High Performance Computing and
Communications; IEEE 15th International Conference on Smart City;
IEEE 3rd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pages 1–9. IEEE, 2017. DOI: 10.1109/HPCC-
SmartCity-DSS.2017.1.

[34] Xiaoqian Wang, Yanfei Kang, Rob J Hyndman, and Feng Li. Distributed
arima models for ultra-long time series. International Journal of
Forecasting, 2022. DOI : 10.1016/j.ijforecast.2022.05.001.

