
A Shared Memory SMC Sampler for Decision Trees

Efthyvoulos Drousiotis
Department of Electrical Engineering and Electronics

University of Liverpool
Liverpool L69 3BX, UK

E.Drousiotis@liverpool.ac.uk

Alessandro Varsi
Department of Electrical Engineering and Electronics

University of Liverpool
Liverpool L69 3BX, UK

A.Varsi@liverpool.ac.uk

Paul G. Spirakis
Department of Computer Science

University of Liverpool
Liverpool L69 3BX, UK

P.Spirakis@liverpool.ac.uk

Simon Maskell
Department of Electrical Engineering and Electronics

University of Liverpool
Liverpool L69 3BX, UK

S.Maskell@liverpool.ac.uk

Abstract—Modern classification problems tackled by using
Decision Tree (DT) models often require demanding constraints
in terms of accuracy and scalability. This is often hard to achieve
due to the ever-increasing volume of data used for training and
testing. Bayesian approaches to DTs using Markov Chain Monte
Carlo (MCMC) methods have demonstrated great accuracy in
a wide range of applications. However, the inherently sequential
nature of MCMC makes it unsuitable to meet both accuracy and
scaling constraints. One could run multiple MCMC chains in
an embarrassingly parallel fashion. Despite the improved run-
time, this approach sacrifices accuracy in exchange for strong
scaling. Sequential Monte Carlo (SMC) samplers are another
class of Bayesian inference methods that also have the appealing
property of being parallelizable without trading off accuracy.
Nevertheless, finding an effective parallelization for the SMC
sampler is difficult, due to the challenges in parallelizing its
bottleneck, redistribution, in such a way that the workload
is equally divided across the processing elements, especially
when dealing with variable-size models such as DTs. This study
presents a parallel SMC sampler for DTs on Shared Memory
(SM) architectures, with an O(log2 N) parallel redistribution for
variable-size samples. On an SM machine mounting 32 cores,
the experimental results show that our proposed method scales
up to a factor of 16 compared to its serial implementation, and
provides comparable accuracy to MCMC, but 51 times faster.

Index Terms—Parallel Algorithms, Sequential Monte Carlo
Samplers, Markov Chain Monte Carlo, Bayesian Decision Trees,
Shared Memory Programming.

I. INTRODUCTION

A. Motivation

Decision Tree (DT) models are well-used algorithms to

solve classification problems in the field of Machine Learning

(ML). Its application domain is vast and diverse since it

ranges from medicine [1] to biology [2], chemistry [3], and

engineering [4]. While real-world applications provide access

to large amounts of data, this often translates into challenging

accuracy and run-time constraints.

In the recent past, Markov Chain Monte Carlo (MCMC)

methods have emerged as a popular Bayesian approach to

DTs [5]–[8], often providing better classification accuracy than

traditional classification methods, such as decision forests [9],

[10]. Despite its state-of-the-art accuracy performance, MCMC

is also highly computationally intensive. This limitation would

typically be compensated by using parallel computing on

multi-core architectures. However, MCMC is widely-known

to be inherently sequential, making it challenging to tackle

modern classification problems both accurately and quickly.

Therefore, we argue that a Bayesian alternative to MCMC

for DTs to solve ML classification problems, which is both

parallelizable and accurate, would be greatly desirable.

B. Related Work

Bayesian DTs for classification problems in ML were first

presented in [11], [12] and improved in [13], [14]. The idea is

to randomly generate a chain of N samples (each sample being

a DT) in order to estimate the possible problem outcomes.

This approach is used extensively [15], [16], given the good

performance in terms of classification accuracy, but does not

involve any parallel components in its implementation.

Each new sample in an MCMC chain is generated given the

previous one, which is why this approach is hard to perform

in parallel. There exist several attempts to parallelize a single

MCMC chain [17], [18]; examples can also be found in the

context of DTs [19]. These approaches are strongly problem

specific and, as such, do not lead to good scalability in most

cases. Another widely used parallelization strategy is to run

multiple chains in parallel. There are numerous examples of

this method in the literature in the context of DTs [20]–[22].

However, this parallelization strategy trades off the accuracy

in order to achieve good scaling and run-time performance.

Sequential Monte Carlo (SMC) samplers [23] are another

class of Monte Carlo (MC) methods that can be used in

the same context as MCMC. The overall idea is to use a

combination of sampling and resampling to generate a popu-

lation of N random samples. The advantage of SMC is that

it can provide competitive accuracy but is also parallelizable,

because the samples are generated independently. However,

an effective parallelization of SMC is not straightforwardly

achievable, given the challenges involved in parallelizing the



bottleneck, redistribution (a sub-task of resampling). The work

in [24] describes a parallelization of the redistribution step for

Distributed Memory (DM) architectures, while [25]–[28] focus

on Shared Memory Programming (SMP). These parallelization

strategies are specific for the case where all samples have

fixed sizes. However, in the case of DTs, as well as other

Abstract Data Types (ADTs) such as additive structures [29],

the samples have variable sizes, meaning that the approaches

in [24]–[28] are not straightforwardly applicable. In [30],

a parallel SMC sampler for DTs on SMP is presented, but

only the sampling step is parallelized, while resampling is

executed sequentially due to the challenges in parallelizing

redistribution, which practically resulted in no scalability. An-

other similar method to a conventional SMC sampler for DTs

is found in [31]. This approach is implemented sequentially,

and in [32] is shown to provide significantly lower accuracy

than MCMC.

C. Contribution and Paper Outline

In this paper, we present a parallel implementation of

an SMC sampler for DTs (and, as such, for application

domains that fall in the scope of ML classification problems)

on SMP that is fully parallelized in all its components. In

doing so, we describe a parallelization for the redistribution

step which works for any variable-size samples, including

DTs, and achieves asymptotically optimal O(log2 N) time

complexity. On a Shared Memory (SM) machine running 32
parallel threads, our proposed method achieves up to a 16-fold

speed-up vs its sequential implementation and offers a better

accuracy-vs-run-time compromise than MCMC. More pre-

cisely, our approach provides comparable accuracy to MCMC

but up to 51 times faster given the same problem size, or

significantly better accuracy for the same run-time.

The remainder of this paper is organized as follows: Section

II briefly describes the DT model. Section III gives details

about SMC and MCMC, with a view to emphasizing their

implementation details in the context of DTs. Section IV

presents and analyzes our approach in details. Section V shows

the experimental results for two commonly used classification

datasets. Section VI draws the final conclusions and gives

suggestions for future work.

II. DECISION TREES

In this section, we briefly describe the anatomy of a DT, in

all its components, and how this model is used for classifica-

tion tasks. The reader is referred to [33] for further details.

Given a dataset comprising l records, Y ∈ Z
l, and cor-

responding matrix of features, x ∈ R
l×r, the DT model is

trained to classify a datum Yj given the corresponding j-th

row of features in x.

For a given tree, T, we define d(T) to be the depth of the

tree, D(T) to be the set of the m non-leaf nodes, and L(T)
to be the set of leaf nodes. The tree, T, is then parameterized

by the set of features for all non-leaf nodes, k, and the vector

of corresponding thresholds, c. A DT operates by descending

a tree. The process of outputting a classification outcome for

root node
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Fig. 1: An example of a DT with d(T) = 3, m = 5, and six

leaf nodes with a quantitative response of two classes.

a given datum starts at the root node. At each non-leaf node, a

decision as to which child node to progress to is made based

on the datum and the parameters of the node. This process

continues until a leaf node is reached. At the leaf node, a

node-specific and datum-independent classification output is

generated. Figure 1 exemplifies a DT with five non-leaf nodes

and six leaf nodes.

III. BAYESIAN DECISION TREES

MC methods can be used to make estimations of the state of

a statistical model, which is described by a posterior distribu-

tion (or simply posterior, the terms are used interchangeably),

i.e., the probability density function of the state of the model

given some data. The idea is to generate a population of

random samples that represent the posterior, with a view

to using the samples to make estimates. However, posterior

distributions are often challenging to be sampled from directly.

MCMC and SMC are two of the most popular Bayesian classes

of methodologies for sampling from a posterior distribution.

When it comes to Bayesian approaches to DTs, we are

interested in making estimations of the true tree, T, and its

set of features, θ, given some data, Y, and its features, x,

for a classification problem. Therefore, π(T, θ|Y,x) is the

posterior from which we want to generate random samples.

In this section, we describe how both MCMC and SMC can

be implemented in the specific case of sampling a population

of DTs. The reader is referred to [11], [12], [23].

A. Markov Chain Monte Carlo

The idea behind MCMC methods is to perform NT iter-

ations, ∀k = 0, 1, 2, . . . , NT − 1, each of which generates a

sample, tk, of π(T, θ|Y,x), each sample including a possible

guess of T and θ. The first sample, t0, is generated from an

arbitrary initial proposal distribution (or initial proposal, the



terms are used interchangeably), q0(·), from which it is easy

to sample. After that, each iteration, ∀k, first proposes a new

sample of the posterior by sampling from another proposal

distribution (or proposal, the terms are used interchangeably),

q(·|tk−1), as follows:

t′ ∼ q(·|tk−1), (1)

where the proposal is also arbitrary, and conveniently easy to

sample from.

The proposed sample, t′, will then be either accepted or

rejected according to the following acceptance probability:

a(t′, tk−1) = min

(
1,

π (t′|Y,x)

π (tk−1|Y,x)

q (tk−1|t′)
q (t′|tk−1)

)
. (2)

In other words, the new sample, tk, will be:

tk =

{
t′ if u ≤ a(t′, tk−1),

tk−1 if u > a(t′, tk−1),
(3)

where u ∼ Uniform[0, 1].
After NT − 1 iterations, we have a single chain of NT

samples from which we can estimate T and θ, by either

computing the mean of the samples or using majority voting.

However, before doing that, an initial subset of the NT

samples, typically Nb = 0.5NT , is discarded, a process called

burn-in. This is done to improve the quality of the estimation,

as the first samples are often not converged. In Section V, we

refer to this method (which is also illustrated in Algorithm 1)

as Single-Chain MCMC.

Algorithm 1 Single-Chain MCMC

Input: NT , Nb

Output: t

1: t0 ∼ q0(·)
2: for k ← 1; k < NT ; k ← k + 1 do
3: t′ ∼ q(·|tk−1)

4: a(t′, tk−1)← min

(
1,

π(t′|Y,x)
π(tk−1|Y,x)

q(tk−1|t′)
q(t′|tk−1)

)

5: u ∼ Uniform[0, 1]
6: if u ≤ a(t′, tk−1) then
7: tk ← t′

8: else
9: tk ← tk−1

10: end if
11: end for
12: Discard first Nb samples in t ∀k = 0, 1, . . . , Nb − 1

This approach is inherently sequential, as each sample is

generated given the previous one. One could try to parallelize

either (1) or (2), as done in [19], for example. However, this

approach is strongly model dependent and often results in

poor scalability. Another alternative is to run N chains in

parallel, each with K samples [20], [22], such that the total

number of samples is NT = N ×K. In Section V, we refer

to this method (which is briefly summarized in Algorithm 2)

as Multi-Chain MCMC. Since the chains are generated in an

embarrassingly parallel fashion, Algorithm 2 scales as O(NP )
if using P processing elements.

Algorithm 2 Multi-Chain MCMC

Input: N,K
Output: t

1: Nb ← K
2

2: for i← 0; i < N ; i← i+ 1 do in parallel
3: ti0:K−Nb−1 ←Single-Chain MCMC(K,Nb)
4: end for

B. Sequential Monte Carlo

There exist several variants of SMC samplers. However,

the general idea is to perform sampling and resampling in

sequence for K iterations, ∀k = 0, 1, . . . ,K−1, each of which

will generate and update N independent, weighted samples,

tik, ∀i = 0, 1, 2, . . . , N − 1. In this paper, we use Sampling

Using Multinomial Distribution (SUMD), a variant of SMC

that revisits some concepts from MCMC. The samples are

first initialized from the initial proposal as follows:

ti0 ∼ q0(·), ∀i = 0, 1, 2, . . . , N − 1. (4)

Then, during each SMC iteration, ∀k = 1, 2, . . . ,K − 1,

the samples are updated from the proposal and weighted as

follows:

tik ∼ q(·|tik−1), ∀i = 0, 1, 2, . . . , N − 1, (5a)

wi
k =

π
(
tik|Y,x

)
π
(
tik−1|Y,x

) q (tik−1|tik
)

q
(
tik|tik−1

) , ∀i = 0, 1, 2, . . . , N − 1.

(5b)

The weights wi
k, ∀i = 0, 1, . . . , N − 1, are then normalized

such that
∑

i w̃
i
k = 1, i.e., 100% of the total probability space.

The normalized weights are then computed as follows:

w̃i
k =

wi
k∑N−1

j=0 wj
k

, ∀i = 0, 1, 2, . . . , N − 1. (6)

Since the samples are generated from q(·|·), and not di-

rectly from the posterior distribution of interest, this sampling

strategy may suffer from a numerical error, called degeneracy,

which could make most of the weights equal to 0, leading to-

wards poor estimations of the state. This problem is commonly

tackled by using resampling, an algorithm that overwrites the

samples with low weights with copies of the samples with

high weights. Several variants of resampling can be found in

the literature [34]. SUMD uses multinomial resampling, which

performs two steps.

In the first step, we compute ncopies ∈ Z
N , an array

of N non-negative integers whose i-th element, ncopiesi,
says how many copies of the i-th sample, tik, are necessary

to keep. To do that, multinomial resampling first computes

cdf ∈ R
N , the cumulative sum (or prefix sum, the terms are

used interchangeably) of w̃, as follows:

cdf i =
∑i−1

j=0
w̃j

k, ∀i = 0, 1, 2, . . . , N − 1. (7)

Then, ncopiesi is computed by

ncopiesi = �cdf i+1−u�−�cdf i−u�, ∀i = 0, 1, . . . , N−1,
(8)



where u ∼Uniform[0, 1], and �·� is the ceiling operator.

From (7) and (8) it is relatively straightforward to infer that

0 ≤ ncopiesi ≤ N, ∀i = 0, 1, 2, . . . , N − 1, (9a)∑N−1

i=0
ncopiesi = N. (9b)

The second step is redistribution, which creates a new

population of samples by duplicating each sample, tik, a total

of ncopiesi times, meaning that those samples for which

ncopiesi = 0 will be deleted. Algorithm 3 illustrates a

possible implementation of a Sequential Redistribution (S-R).

Algorithm 3 Sequential Redistribution (S-R)

Input: t, ncopies, N
Output: tnew

1: i← 0
2: for j ← 0; j < N ; j ← j + 1 do
3: for copy ← 0; copy < ncopiesj ; copy ← copy + 1 do
4: tinew ← tj

5: i← i+ 1
6: end for
7: end for

After resampling, a new iteration starts from (5) and, after

K−1 iterations, the final samples are used to make estimates,

by either computing the mean, or the majority voting. Algo-

rithm 4 summarizes the steps above. In line with the notation

used for Single-Chain MCMC and Multi-Chain MCMC, we

say that SMC has a total problem size equal to NT = N ×K,

since each of the N samples is updated K times.

Algorithm 4 Sampling Using Multinomial Distribution

Input: K, N
Output: tk

ti0 ∼ q0(), ∀i = 0, 1, . . . , N − 1
for k ← 0; k < K; k ← k + 1 do

tik ∼ q(·|tik−1), ∀i = 0, 1, 2, . . . , N − 1

wi
k ← π(tik|Y,x)

π(tik−1
|Y,x)

q(tik−1|tik)
q(tik|tik−1)

, ∀i = 0, 1, 2, . . . , N − 1

w̃i
k ← wi

k
∑N−1

j=0 w
j
k

, ∀i = 0, 1, 2, . . . , N − 1

cdf i ←∑i−1
j=0 w̃

j
k, ∀i = 0, 1, . . . , N − 1

u ∼Uniform[0, 1]
ncopiesi ← �cdf i+1−u�−�cdf i−u�, ∀i = 0, 1, . . . , N−1
tk ←Redistribution(tk,ncopies, N)

end for

C. Posterior and Proposal for Bayesian Decision Trees

In this section, we briefly describe how to compute the

posterior, the proposal, and the initial proposal in the specific

case of DTs.

1) Posterior Distribution: The posterior is proportional (up

to a normalization constant) to the product of the likelihood

and the prior. In other words:

π(T, θ|Y,x) ∝ p(Y|T, θ,x)p(θ,T)

= p(Y|T, θ,x)p(θ|T)p(T), (10)

where p(Y|T, θ,x) is the likelihood and p(θ,T) is the prior.

More precisely, for each individual term in (10), we use the

following expressions:

p(Y|T, θ,x) =
∏l−1

j=0
p(Yj |xj ,T, θ), (11)

p(θ|T) =
∏m−1

j=0
p(kj |T)p(cj |kj ,T), (12)

p(T) =
λm

(eλ − 1)m!
. (13)

Using the Poisson distribution for the p(T) term is a common

practice in the literature [12], [15], [16]. As we can see,

(13) only requires tuning of the λ hyperparameter. Another

valid expression can be found in [35], [36]. This alternative,

however, requires tuning of two hyperparameters. Therefore,

we employ (13) for simplicity.

2) Proposal Distribution: In the case of the initial proposal

distribution, q0(·), we sample from the prior of the tree, p(T).
The proposal distribution, q(·|·), consists of a set of four

possible moves, which may either change the dimensionality

of the tree or update its nodes. The possible moves are:

• Grow. This move increases the dimensionality of the

tree by uniformly selecting one of the leaf nodes and

appending two new child nodes to the selected leaf.

• Prune. This move decreases the dimensionality of the

tree by uniformly selecting one of the non-leaf nodes

and removing its child nodes.

• Change. This move picks uniformly a non-leaf node,

j, and changes its feature, kj , and threshold, cj . In

other words, this move neither increases nor decreases

the dimensionality of the tree.

• Swap. This move picks two non-leaf nodes, i and j,

uniformly, and swaps their features, ki and kj , and their

thresholds, ci and cj . Therefore, this move also maintains

the dimensionality of the tree unchanged.

The probabilities of selecting any of these four moves,

p(Grow), p(Prune), p(Change), and p(Swap), are user-

defined, but they must sum up to 1, and a typical choice is

to make these probabilities equal to 25%. The value of q(·|·)
to be used in (2) and (5b) is described in detail in [19], and

omitted here for brevity.

IV. PARALLEL SEQUENTIAL MONTE CARLO

In this section, we describe the parallelization of all tasks in

the SMC sampler, including our approach to parallelizing the

redistribution step, and also give some brief implementation

details. All code we have used in this work is implemented in

C++ with OpenMP 4.5.

It is relatively straightforward to infer that both steps

to initialize and update the samples and the weights, i.e.,

Equations (4) and (5), are embarrassingly parallel. On SMP

(as well as on DM), these steps can be parallelized by equally

dividing the iteration space of the related for loops, ∀i, across

the P SM threads, such that each thread, id = 0, 1, . . . , P −1,

works on a chunk of n = N
P samples and weights with index



i = id ·n, id ·n+1, id ·n+2, . . . , (id+1) ·n− 1. Therefore,

these steps scale as O(NP ). The same can be said about (8).

On OpenMP, embarrassingly parallel tasks are parallelized by

adding #pragma omp parallel for instructions on top

of the related for loops.

Equations (6), requires the computation of a vector sum.

This operation is parallelizable by using reduction, which

notoriously achieves O(NP + log2 P ) time complexity. On

OpenMP, reducible operators are parallelized by adding the

reduction clause to the pragma instructions, and specifying

the operator (e.g. + for the vector sum and max for the vector

max) and the variable to reduce.

The prefix sum in Equation (7) can also be performed in

O(NP + log2 P ) by using prefix reduction. Implementation

details are omitted for brevity, but further information can be

found in [37], [38].

Algorithm 3 takes O(N) steps on a single core, just like

all the other tasks in the SMC sampler when P = 1. This

is because Equation (9b) holds. However, this algorithm is

impossible to be parallelized if using embarrassingly parallel

approaches. The main reason is that the workload associated

with duplicating each sample, ti, a total of ncopiesi times is

inherently unbalanced as Equation (9a) holds. In several cases,

such as when sampling DTs, the samples have variable sizes,

which would potentially make an embarrassingly parallel

attempt to parallelize S-R even more unbalanced. Here, we

describe an approach that works for variable-size samples,

scales as O(NP +log2 N), and maintains the workload on each

thread balanced.

Step 1 - Max. Let Mi ∈ Z
+, ∀i = 0, 1, . . . , N − 1, be the

size of each sample, ti. In this step, the threads compute in

parallel

M = max
0≤i≤N−1

Mi, (14)

i.e., the size of the biggest sample.

Step 2 - Pad. Each thread, id = 0, 1, . . . , P − 1, extends

each sample by appending M −Mi dimensions each with a

value that is known to be impossible. In the specific case of

DTs, we can use negative integers such as −1, but we advocate

that Not a Numbers (NaNs) would be a generic value for any

variable-size ADT. After this step, the samples have all the

same size M .

Step 3 - Prefix Sum. In this step, the threads first compute in

parallel csum ∈ ZN , the cumulative sum of ncopies, such

that

csumi =
∑i−1

j=0
ncopiesj , ∀i = 0, 1, . . . , N − 1. (15)

The integer csumi represents the number of copies to be

created up to the index i. Alternatively, because the particles

have now equal sizes, one could think of csumi as the total

workload (up to a constant time term equal M ) in order to

sequentially redistribute the particles from the index 0 to the

index i.
Step 4 - Binary Search. It is now possible to perfectly

divide the total workload to redistribute N samples between

P threads if each thread, id = 0, 1, . . . , P − 1, searches for

an index, called pivot, p, which is the first index that satisfies

the following boolean expression:

csump ≥ id× n. (16)

Since csum is inherently monotonically increasing, it is also

sorted by definition. Therefore, each thread can independently

search for its pivot by using Binary Search (BS).

Step 5 - Copy. After Step 4, each thread can freely and

independently redistribute N
P samples starting from its pivot

by using Algorithm 3. However, more than one thread may

happen to share the same pivot. Therefore, before using S-R,

each thread must first figure out how many copies of tp is

allowed to create. This is always computed as the

min (csump − id× n, n) . (17)

Indeed, since the workload is divided according to csum and

Equation (16), if two or more threads share the same pivot,

only the thread with the highest id must create less than n =
N
P copies of tp. We note that, since this algorithm is designed

to run on SMP, in this step it is strongly recommended to use a

temporary array where the samples get temporarily copied to,

such that the parallel threads will not risk overwriting sensible

information.

Step 6 - Restore. Each thread, id = 0, 1, . . . , P − 1, loops

over the samples ti, ∀i = id·n, id·n+1, id·n+2, . . . , (id+1)·
n−1, and removes up to M−1 dimensions from each sample,

i.e., those dimensions that are encoded with an impossible

value during Pad, such as −1s for DTs or NaNs for any ADT.

Algorithm 5 Parallel Redistribution for Variable Size Samples

Input: t, ncopies, M, N , P , n = N
P

Output: t

1: M ←Max(M, P ), spawns & runs P threads
2: t←Pad(t, M , P ), spawns & runs P threads
3: csum←Prefix Sum(ncopies, P ), spawns & runs P threads
4: Spawn P threads with id = 0, 1, . . . , P − 1{

5: p←Binary Search(csum, ncopies, n)
6: cp← min (csump − id× n, n)
7: tn:n×cp−1

temp ← tp

8: ttemp ← S-R(tp+1:N−1, ncopiesp+1:N−1, n− cp)

9: }
10: t← Restore(ttemp,M , P ), spawns & runs P threads

These steps are summarized in Algorithm 5, and Figure 2

illustrates a practical example for N = 8 samples and P = 4
threads. In the following theorem and corollary, we analyze

the time complexity of our approach.

Theorem IV.1. Let t be an array of N lists, where each list,
ti, ∀i = 0, 1, . . . , N−1, has variable size, Mi. Let ncopies ∈
ZN be an array of non-negative integers for which (9) holds.
On an SM architecture running P parallel threads, Algorithm
5 redistributes t according to ncopies in O(NP + log2 N)
steps with an O(M) constant time factor for each sample.

Proof. To prove Theorem IV.1, we start by analyzing the time

complexity of each of the steps in Algorithm 5 individually.
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Fig. 2: Parallel Redistribution - Example for N = 8 and P =
4. Each tree node is encoded with a letter and number for

brevity. The −1s represent fake tree nodes.

The computation of M in (14) can be parallelized by using

parallel reduction, as the vector max operator is also reducible,

just like vector sum. Therefore, (14) scales as O(NP +log2 P )
with a O(1) constant time factor.

Step 2 and Step 6 are embarrassingly parallel, as they loop

independently over the samples and extend or reduce the

dimensionality of each sample by up to M − 1. Therefore,

these two steps scale as O(M N
P ), or, more simply, as O(NP )

with a constant time factor per sample of O(M).

In Step 3, the parallel threads compute the cumulative sum

of ncopies, which, as we said above, achieves O(NP +log2 P )
time complexity with a O(1) constant time factor.

In Step 4, the threads perform one independent BS each,

which notoriously takes O(log2 N) comparisons. In addition,

each thread also computes (16) once, which takes O(1).

The copying procedure described in Step 5 requires each

thread to copy independently N
P particles, each of which has

M dimensions. Therefore, this step, just like Step 2 and Step 6,

scales as O(M N
P ), or, more simply, as O(NP ) with an O(M)

constant time factor per sample.

Hence, by summing up the individual time complexity terms

described above, we can conclude that Algorithm 5 runs in

O(NP + log2 N) with an O(M) computational cost on each

sample.

Corollary 1. Let t be an array of N lists, where each list, ti,
∀i = 0, 1, . . . , N − 1, has variable size, Mi, and normalized
weight w̃i ∈ R. On an SM architecture running P parallel
threads, a resampling algorithm performing steps (7), (8), and
Algorithm 5 achieves asymptotically optimal time complexity
equal to O(log2 N).

Proof. As mentioned in this section, Equation (8) is embar-

rassingly parallel, and hence takes O(1) iterations for P = N ,

and Equation (7) can be executed in O(log2 N) for P = N by

using parallel prefix sum. Furthermore, the time complexity

of parallel prefix sum is optimally bound to O(log2 N) as

proven in [39]. Therefore, given the result from Theorem

IV.1, this corollary is straightforwardly proven by absurdity.

Indeed, even if it was possible to redistribute N samples in less

than O(log2 N), such as O(log(log2 N)) or O(1), or entirely

avoid redistribution, the overall time complexity of resampling

would still be bound to O(log2 N) due to Equation (7).

Remark 1. We note that, although Theorem IV.1 and Corol-
lary 1 prove that the presented approach achieves the asymp-
totic lower bound (which straightforwardly makes Algorithm 4
achieve the optimal time complexity as well), the constant time
per sample in the resampling algorithm is bound to O(M),
which is not optimal. In fact, in this work, we have employed
static load balancing to parallelize Algorithm 3. However,
dynamic load balancing solutions could be an interesting
alternative to explore in future work because, despite often
showing data-dependent performance, they may outperform
static load balancing variants.

V. NUMERICAL RESULTS

To demonstrate the improvements of our proposed method,

we provide numerical results in two different experimental

settings, each using three publicly accessible and progressively

larger datasets which are commonly used in ML classification

experiments1. More precisely, the first dataset is called Pima

Indians Diabetes (Diabetes), which has 768 records and 9

features and provides data to learn to classify whether a patient

has diabetes or not, such that we have two possible classes for

the outcome. The second dataset is named Abalone, which

has 4177 records and 9 features and provides data to learn

to classify the age of abalones, whose outcome is divided

into 29 possible classes. The third dataset is called Predict

Students’ Dropout and Academic Success (Students), which

has 4424 records and 37 features, and provides data to learn

to classify whether students enroll, drop out or graduate from

1https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database,
https://www.kaggle.com/datasets/hurshd0/abalone-uci, https://archive.ics.uci.
edu/dataset/697/predict+students+dropout+and+academic+success



university, such that the outcome has three possible classes. In

both experiments, we have used 70% of data for training and

the remaining 30% for the test.

For both experiments, we have used a workstation that

mounts a 2 Xeon Gold 6138 CPU and 384GB of memory.

Although the 2 Xeon Gold 6138 CPU provides 40 physical

cores, in all experiments we have always requested a power-

of-two number of SM threads, up to 32, each bound to one

physical core. This is done with a view to optimizing the

workload balance across the threads, as the parallel algorithms

described in Section IV mostly employ the divide-and-conquer

paradigm. Every reported numerical result in the following

sections is computed as the mean of 10 MC runs, each using

a different seed for the random number generators. We note

that 10 MC runs have shown empirically to be sufficient to

extrapolate accurate average results, which is unsurprising as

in this paper we have considered parallelization strategies that

achieve static load balancing.

A. Performance for Fixed Problem Size

In this first experiment, we want to compare SMC, Single-

Chain MCMC, and Multi-Chain MCMC in terms of run-time

and accuracy for the same problem size. More precisely, this

experiment has been set up as follows. Firstly, the number of

samples in the SMC sampler, N , has to be an integer multiple

of P , for obvious reasons. Since we are using power-of-two

numbers for P , it is also convenient to do the same for N .

More precisely, we use N = {256, 512, 1024} samples. We

have run the SMC sampler for K = 10 iterations for all

datasets, whose value has been empirically set up to provide

a competitive classification accuracy. Since we want to use

the same problem size for all methods, we make Single-Chain

MCMC draw N × K = NT samples, and we make Multi-

Chain MCMC generate N chains of K samples each. Hence,

all methods are run for the same problem size, NT = N ×K.

The results for this experiment are found in Table I and

Figures 3, 4, 5, and 6. Table I provides the classification

accuracy in all datasets for the largest problem size we have

considered, i.e., NT = 10240. As we can see, the SMC

sampler provides roughly the same accuracy as Single-Chain

MCMC, which draws a long chain of samples. However, while

Single-Chain MCMC is notoriously an inherently sequential

method, the SMC sampler also provides good scalability (up to

a 16-fold speed-up), which, as expected from theory, improves

when either the problem size increases or the dataset is bigger

and, hence, more computationally intensive (see Figure 4).

Therefore, by running up to P = 32 parallel threads, the SMC

sampler is able to provide the same accuracy as Single-Chain

MCMC faster by up to a 13 time factor (in Diabetes), by up

to a 42 time factor (in Abalone), and by up to a 51 time factor

(in Students). These results are illustrated in Figure 6, which

shows the speed-up gain (vs the number of SM threads, P ) of

SMC in comparison with Single-Chain MCMC for the same

problem size NT = 10240, for which, as we said above, both

methods achieve approximately equal classification accuracy.

Although Single-Chain MCMC cannot be parallelized, it is

possible to run multiple MCMC chains in an embarrassingly

parallel fashion. Indeed, Multi-Chain MCMC scales well with

P , as shown in Figure 5. Also, this method is faster than SMC

roughly by up to a factor of two (in Abalone and Students)

and by up to a factor of four (in Diabetes), as shown in Figure

3. This is unsurprising due to two reasons. First, Algorithm

2 is embarrassingly parallel, while our approach is optimally

bound to O(log2 N). Second, the constant time per sample

in Multi-Chain MCMC is solely due to Equations (1), (2),

and (3), while updating each sample in the SMC sampler

requires (apart from also having to propose and weight the

new sample) extra computation given by Equations (6), (7),

(8), and Algorithm 5, whose constant time is O(M) (see

Theorem IV.1). However, despite its competitive scalability

and run-time, Multi-Chain MCMC provides worse accuracy

than SMC and Single-Chain MCMC, when the problem size is

fixed (see Table I). Indeed, SMC achieves good accuracy since

the N samples are weighted but also updated and corrected K
times through sampling and resampling. Single-Chain MCMC

generates a long chain of unweighted samples, which, most

certainly, have converged. Multi-Chain MCMC creates N
short independent chains of K 
 N unweighted samples,

which, most likely, have not converged yet.

Given the run-time-vs-accuracy trade-off that Multi-Chain

MCMC requires, the reader may wonder whether Multi-Chain

MCMC would provide better accuracy than SMC if K is

increased until the two methods run for the same elapsed time.

The next section provides an answer to this question.

TABLE I: Classification accuracy for the same problem size

NT = 10240 samples, generated by each method as follows:

N = 1024 samples updated K = 10 times for SMC; one chain

of NT = 10240 samples for Single-Chain MCMC; N = 1024
chains of K = 10 samples each for Multi-Chain MCMC.

Method P Diabetes Abalone Students

SMC 1 73.27% 22.48% 71.48%
SMC 32 73.27% 22.48% 71.48%

Single-Chain 1 73.78% 22.53% 71.64%
Multi-Chain 1 66.76% 20.27% 55.53%
Multi-Chain 32 66.76% 20.27% 55.53%

B. Accuracy for Fixed Elapsed Time

As anticipated in the previous section, in this second exper-

iment we want to run SMC and Multi-Chain MCMC for the

same elapsed time with a view to comparing their classification

accuracy. To achieve this, we first consider the best run-

times for both SMC and Multi-Chain MCMC for N = 1024,

and then we increase K for Multi-Chain MCMC until the

run-times of both methods match (roughly). The results are

provided in Table II for Diabetes, in Table III for Abalone,

and in Table IV for Students.

As we can see, we have had to increase K in Multi-Chain

MCMC by a factor of 3.3 in Diabetes, by a factor of 1.8 in

Abalone, and by a factor of 1.5 in Students with respect to the



(a) Diabetes (b) Abalone (c) Students

Fig. 3: Run-times for MCMC and SMC vs total sample size NT .

(a) Diabetes (b) Abalone (c) Students

Fig. 4: Speed-ups for SMC for K = 10 iterations and increasing number of samples N .

(a) Diabetes (b) Abalone (c) Students

Fig. 5: Speed-ups for Multi-Chain MCMC for K = 10 samples per chain and increasing number of chains N .

previous section (in which we set K = 10). In all datasets, this

has resulted in an improved accuracy compared to the results

in Table I. More precisely, the accuracy has increased from

66.76% to 69.49% in Diabetes, from 20.27% to 20.62% in

Abalone, and from 55.53% to 60.32% in Students. However,

these figures are still significantly lower than those reported

for SMC.

In other words, these results indicate that a parallel SMC

sampler is able to compensate for the larger constant time fac-

tor than the one in parallel Multi-Chain MCMC by achieving a

better accuracy per time unit, and therefore, providing a more

convenient run-time-vs-accuracy compromise.

TABLE II: Accuracy per time unit - Diabetes. The * is to

emphasize that the run-time is rounded to the closest integer,

as running two different methods for exactly the same run-

time is challenging.

Method P N K Time Accuracy

SMC 32 210 10 13[s]* 73.27%
Multi-Chain MCMC 32 210 33 13[s]* 69.49%



Fig. 6: Speed-up gain of SMC vs Single-Chain MCMC for

(approximately) the same accuracy.

TABLE III: Accuracy per time unit - Abalone. The * is to

emphasize that the run-time is rounded to the closest integer,

as running two different methods for exactly the same run-

time is challenging.

Method P N K Time Accuracy

SMC 32 210 10 47[s]* 22.48%
Multi-Chain MCMC 32 210 18 47[s]* 20.62%

TABLE IV: Accuracy per time unit - Students. The * is to

emphasize that the run-time is rounded to the closest integer,

as running two different methods for exactly the same run-

time is challenging.

Method P N K Time Accuracy

SMC 32 210 10 77[s]* 71.48%
Multi-Chain MCMC 32 210 15 77[s]* 60.32%

VI. CONCLUSION

In this study, we have proposed a parallel shared memory

SMC sampler for Bayesian DTs, which also includes a par-

allelization of the bottleneck, redistribution, which achieves

optimal time complexity O(log2 N), and takes into account

that the random samples, i.e., the DTs here, have variable

sizes. Hence, given that the focus is on DTs, the specific ML

domain of this study is classification. By taking advantage of

multi-core architectures, our approach provides up to a 16-fold

speed-up for 32 parallel threads and significantly improves

the performance of alternative approaches to Bayesian DTs,

such as MCMC. More precisely, on three exemplar datasets

for classification, our approach can provide roughly the same

classification accuracy up to 51× faster for the same problem

size or significantly better accuracy for the same elapsed time.

Although the results are encouraging, there is still a wide

room for future improvements, both in accuracy and run-time.

For example, the accuracy could be improved by using a better

proposal distribution for ADTs, such as HINTS [40]. However,

improving the proposal typically increases the run-time as a

side effect, which can be compensated by any combination of

the following ideas. First, in this manuscript, we have solely

focused on SMP for CPUs. However, one could first exploit

the acceleration that GPUs typically provide over CPUs.

Indeed, we expect a GPU to perform significantly better on

embarrassingly parallel tasks such as the sampling step in the

SMC sampler. Another typical approach in High-Performance

Computing is to increase the degree of parallelism by using

hybrid MPI+X programming models, which fully exploit the

computational power of modern supercomputers both in terms

of distributed and shared memory. Another exploration avenue

is to exploit alternative parallel solutions for the tasks in the

SMC sampler. Indeed, in this manuscript, we have opted for

static load-balancing solutions; however, given the variable-

size nature of DTs, one could investigate dynamic load-

balancing alternative solutions to achieve better runtime and

scalability.
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